Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Parasitol ; 43(2): 181-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23262303

RESUMEN

Proteins derived from the rhoptry secretory organelles are crucial for the invasion and survival of apicomplexan parasites within host cells. The rhoptries are club-shaped organelles that contain two distinct subpopulations of proteins that localise to separate compartments of the organelle. Proteins from the neck region (rhoptry neck proteins, RON) are secreted early in invasion and a subset of these is critical for the formation and function of the moving junction between parasite and host membranes. Proteins from the bulb compartment (rhoptry protein, ROP) are released later, into the nascent parasitophorous vacuole where they have a role in modifying the vacuolar environment, and into the host cell where they act as key determinants of virulence through their ability to interact with host cell signalling pathways, causing an array of downstream effects. In this paper we present the results of an extensive proteomics analysis of the rhoptry organelles from the coccidian parasite, Eimeria tenella, which is a highly pathogenic parasite of the domestic chicken causing severe caecal coccidiosis. Several different classes of rhoptry protein have been identified. First are the RON proteins that have varying degrees of similarity to proteins of Toxoplasma gondii and Neospora caninum. For some RON families, E. tenella expresses more than one gene product and many of the individual RON proteins are differentially expressed between the sporozoite and merozoite developmental stages. The E. tenella sporozoite rhoptry expresses only a limited repertoire of proteins with homology to known ROP proteins from other coccidia, including just two secreted ROP kinases, both of which appear to be equipped for catalytic activity. Finally, a large number of hitherto undescribed proteins that map to the sporozoite rhoptry are identified, many of which have orthologous proteins encoded within the genomes of T. gondii and N. caninum.


Asunto(s)
Eimeria tenella/crecimiento & desarrollo , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo , Eimeria tenella/química , Eimeria tenella/genética , Eimeria tenella/metabolismo , Electroforesis en Gel Bidimensional , Espectrometría de Masas , Datos de Secuencia Molecular , Proteoma/química , Proteoma/genética , Proteómica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Esporozoítos/química , Esporozoítos/crecimiento & desarrollo
2.
Vaccine ; 30(16): 2683-8, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22342500

RESUMEN

Vaccination of poultry against coccidiosis caused by the Eimeria species is almost entirely based upon varied formulations of live parasites. The recent development of a series of protocols that support genetic complementation by transfection in Eimeria now provides an opportunity to utilise live anticoccidial vaccines to deliver additional vaccinal antigens. The capacity of Eimeria tenella to express an exogenous antigen and induce an immune response during in vivo infection which is protective against subsequent bacterial challenge has been tested here using the anti-Campylobacter jejuni vaccine candidate CjaA. Using restriction enzyme mediated integration (REMI) a transgenic E. tenella population expressing CjaA and the fluorescent reporter mCitrine has been developed. Vaccination of specific pathogen free chickens by single or multiple oral inoculation of E. tenella-CjaA oocysts induced 91% and 86% immune protection against C. jejuni challenge compared with unvaccinated and wild-type E. tenella vaccinated controls (p<0.001). Increasing vaccination number had no significant influence on the magnitude of protection. These results support the hypothesis that eimerian parasites can be developed as multivalent vaccine vectors and encourage the extension of these studies.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Sistemas de Transporte de Aminoácidos Neutros/inmunología , Vacunas Bacterianas/genética , Infecciones por Campylobacter/veterinaria , Pollos , Eimeria tenella/genética , Técnicas de Transferencia de Gen , Enfermedades de las Aves de Corral/prevención & control , Transportadoras de Casetes de Unión a ATP/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Vacunas Bacterianas/inmunología , Infecciones por Campylobacter/inmunología , Infecciones por Campylobacter/prevención & control , Campylobacter jejuni/inmunología , Eimeria tenella/inmunología , Electroporación , Genes Reporteros , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Inmunidad Activa , Oocistos/inmunología , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/inmunología , Enfermedades de las Aves de Corral/inmunología , Transfección , Vacunación/veterinaria
3.
PLoS Pathog ; 7(2): e1001279, 2011 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21347348

RESUMEN

Apicomplexan parasites are responsible for a myriad of diseases in humans and livestock; yet despite intensive effort, development of effective sub-unit vaccines remains a long-term goal. Antigenic complexity and our inability to identify protective antigens from the pool that induce response are serious challenges in the development of new vaccines. Using a combination of parasite genetics and selective barriers with population-based genetic fingerprinting, we have identified that immunity against the most important apicomplexan parasite of livestock (Eimeria spp.) was targeted against a few discrete regions of the genome. Herein we report the identification of six genomic regions and, within two of those loci, the identification of true protective antigens that confer immunity as sub-unit vaccines. The first of these is an Eimeria maxima homologue of apical membrane antigen-1 (AMA-1) and the second is a previously uncharacterised gene that we have termed 'immune mapped protein-1' (IMP-1). Significantly, homologues of the AMA-1 antigen are protective with a range of apicomplexan parasites including Plasmodium spp., which suggest that there may be some characteristic(s) of protective antigens shared across this diverse group of parasites. Interestingly, homologues of the IMP-1 antigen, which is protective against E. maxima infection, can be identified in Toxoplasma gondii and Neospora caninum. Overall, this study documents the discovery of novel protective antigens using a population-based genetic mapping approach allied with a protection-based screen of candidate genes. The identification of AMA-1 and IMP-1 represents a substantial step towards development of an effective anti-eimerian sub-unit vaccine and raises the possibility of identification of novel antigens for other apicomplexan parasites. Moreover, validation of the parasite genetics approach to identify effective antigens supports its adoption in other parasite systems where legitimate protective antigen identification is difficult.


Asunto(s)
Antígenos de Protozoos/genética , Apicomplexa/genética , Mapeo Cromosómico , Evasión Inmune/genética , Algoritmos , Animales , Antígenos de Protozoos/inmunología , Apicomplexa/inmunología , Pollos/inmunología , Pollos/parasitología , Citoprotección/genética , Femenino , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Inmunización/métodos , Modelos Biológicos , Parásitos/genética , Parásitos/inmunología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/patología , Enfermedades de las Aves de Corral/prevención & control
4.
Mol Biochem Parasitol ; 162(1): 77-86, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18723051

RESUMEN

Stable transfection of Eimeria species has been difficult to achieve because of the obligate requirement for in vivo amplification and selection of the parasites. Strategies to generate and stabilise populations of transfected Eimeria tenella are described here, together with the identification of optimal parameters for the transfection process. A series of plasmids expressing selectable markers, including a panel of fluorescent reporter genes and a mutant Toxoplasma gondii dihydrofolate reductase-thymidylate synthase (DHFR-TSm2m3) gene that confers resistance to pyrimethamine, were electroporated into sporozoites of the E. tenella Wisconsin strain and stabilised by selective passage through chickens. Very high transfection efficiencies of up to 25% sporozoites in transient transfection and up to 9% oocysts following a single round of in vivo selection were achieved. Crucial factors include the use of very freshly harvested parasites with the AMAXA nucleofection system (program U33 in a cytomix-buffered reaction) and linearised plasmid DNA. The use of a restriction enzyme mediated integration (REMI) protocol boosted overall efficiency and elevated insertion rate per genome. Successful development of methods to generate and isolate stable populations of transfected Eimeria parasites will now stimulate rapid expansion of reverse genetic studies in this important coccidian.


Asunto(s)
Eimeria tenella/genética , Transfección/métodos , Animales , Antiprotozoarios/farmacología , Proteínas Bacterianas/genética , Pollos , Coccidiosis/parasitología , Coccidiosis/veterinaria , Resistencia a Medicamentos/genética , Eimeria tenella/crecimiento & desarrollo , Electroporación , Genes Reporteros/genética , Proteínas Luminiscentes/genética , Plásmidos/genética , Enfermedades de las Aves de Corral/parasitología , Pirimetamina/farmacología , Organismos Libres de Patógenos Específicos , Esporozoítos , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...