Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38005035

RESUMEN

In this study, a sol-gel film based on lead sulfide (PbS) quantum dots incorporated into a host network was synthesized as a special nanostructured composite material with potential applications in temperature sensor systems. This work dealt with the optical, structural, and morphological properties of a representative PbS quantum dot (QD)-containing thin film belonging to the Al2O3-SiO2-P2O5 system. The film was prepared using the sol-gel method combined with the spin coating technique, starting from a precursor solution containing a suspension of PbS QDs in toluene with a narrow size distribution and coated on a glass substrate in a multilayer process, followed by annealing of each deposited layer. The size (approximately 10 nm) of the lead sulfide nanocrystallites was validated by XRD and by the quantum confinement effect based on the band gap value and by TEM results. The photoluminescence peak of 1505 nm was very close to that of the precursor PbS QD solution, which demonstrated that the synthesis route of the film preserved the optical emission characteristic of the PbS QDs. The photoluminescence of the lead sulfide QD-containing film in the near infrared domain demonstrates that this material is a promising candidate for future sensing applications in temperature monitoring.

2.
Materials (Basel) ; 16(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37176217

RESUMEN

A novel analytical formalism based on the quantum heat transport equation is proposed for the interaction of fs-laser pulses with deoxyribonucleic acid (DNA) strands. The formalism has the intensity of the laser beam and the interaction time between the laser and the DNA as input parameters. To this end, the thermal distribution generated in the irradiated DNA strands was introduced by splitting the laser beam into transverse Hermite-Gauss modes. To achieve this goal, a new powerful mathematical model was developed and applied. Fluctuations in laser intensity were taken into account by modeling them as superpositions of Hermite-Gauss laser modes. These analyses were carried out for a laser pulse duration of 100 fs, where a tiny heat-affected zone is expected, with positive predicted effects on the stability and repeatability of this technology. The main conclusion is that the laser beam spatial distribution intensity plays an essential role in the generation of the shape and magnitude of the thermal field at the junction of the irradiated DNA strands. The model may prove useful in modeling laser beam processing under significant intensity fluctuations. There are at least two main areas of application for the present model of heat transfer from laser to DNA: (i) the study of DNA elongation without destroying the target information (for a sample temperature variation lower than 10 K; in the case of H[1,y]); and (ii) cancer treatment (especially of skin tissue), where we should obtain a temperature variation higher than 10 K (but lower than 30 K; in the case of H[2,y], H[4,y]), in order to eradicate the diseased cells.

3.
Heliyon ; 8(11): e11765, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36444253

RESUMEN

A novel analytical formalism is proposed based upon Quantum heat transport equation in order to describe the femtoseconds/picoseconds laser pulses interaction with the Deoxyribonucleic acid (DNA). The formalism generates solutions based upon inputs as: voltage, laser beam intensity and laser - DNA interaction time. Thermal waves induced inside irradiated DNA are defined and accounted for. Analytical simulations show that the optimum regime of laser - DNA interaction was reached for a potential carrier generated at the interface equal to 3.5 × 10-3 eV. It has to be mentioned that the formalism breaks down if the potential carrier generated at the interface is inferior to 10-2 eV. Accordingly, for pulse duration inferior to 1 ps, the laser beam spatial-temporal distribution has an essential role in defining the shape and magnitude of the thermal distribution within the irradiated DNA strands.

4.
Nanomaterials (Basel) ; 12(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36080042

RESUMEN

IV-VI semiconductor quantum dots embedded into an inorganic matrix represent nanostructured composite materials with potential application in temperature sensor systems. This study explores the optical, structural, and morphological properties of a novel PbS quantum dots (QDs)-doped inorganic thin film belonging to the Al2O3-SiO2-P2O5 system. The film was synthesized by the sol-gel method, spin coating technique, starting from a precursor solution deposited on a glass substrate in a multilayer process, followed by drying of each deposited layer. Crystalline PbS QDs embedded in the inorganic vitreous host matrix formed a nanocomposite material. Specific investigations such as X-ray diffraction (XRD), optical absorbance in the ultraviolet (UV)-visible (Vis)-near infrared (NIR) domain, NIR luminescence, Raman spectroscopy, scanning electron microscopy-energy dispersive X-ray (SEM-EDX), and atomic force microscopy (AFM) were used to obtain a comprehensive characterization of the deposited film. The dimensions of the PbS nanocrystallite phase were corroborated by XRD, SEM-EDX, and AFM results. The luminescence band from 1400 nm follows the luminescence peak of the precursor solution and that of the dopant solution. The emission of the PbS-doped film in the NIR domain is a premise for potential application in temperature sensing systems.

5.
Materials (Basel) ; 15(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35888476

RESUMEN

Recently, ultrafast lasers have been developed and potentially become a point of interest worldwide, as their interaction with matter is yet unknown and can be mediated by new physical mechanisms. Real-time experimentation requires enormous costs, and there is therefore a need to develop computational models for this domain. By keeping in view this idea, a non-Fourier heat equation has solved the case of ultrafast laser-material interaction. Initial and boundary conditions were considered, and a one-dimensional mathematical model was presented. The simulations were compared with the experimental results for ultrashort laser-metallic sample interaction, and a close correlation was proven. It was found that the coupling of electron-phonon becomes "zero" due to short laser-material interaction time. The propagation of thermal waves was identified due to non-Fourier heat implementation. When the pulse duration increases, the variation in the thermal distribution becomes trivial due to an inverse correlation between the pulse duration and total energy within the pulse. When the laser-material interaction time decreases from fs to as, the generation of thermal waves increases and the powerful laser intensity acts as a shock wave during laser-material interaction, which causes a higher intensity of the thermal wave.

6.
Materials (Basel) ; 14(16)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34443257

RESUMEN

Heat equations can estimate the thermal distribution and phase transformation in real-time based on the operating conditions and material properties. Such wonderful features have enabled heat equations in various fields, including laser and electron beam processing. The integral transform technique (ITT) is a powerful general-purpose semi-analytical/numerical method that transforms partial differential equations into a coupled system of ordinary differential equations. Under this category, Fourier and non-Fourier heat equations can be implemented on both equilibrium and non-equilibrium thermo-dynamical processes, including a wide range of processes such as the Two-Temperature Model, ultra-fast laser irradiation, and biological processes. This review article focuses on heat equation models, including Fourier and non-Fourier heat equations. A comparison between Fourier and non-Fourier heat equations and their generalized solutions have been discussed. Various components of heat equations and their implementation in multiple processes have been illustrated. Besides, literature has been collected based on ITT implementation in various materials. Furthermore, a future outlook has been provided for Fourier and non-Fourier heat equations. It was found that the Fourier heat equation is simple to use but involves infinite speed heat propagation in comparison to the non-Fourier heat equation and can be linked with the Two-Temperature Model in a natural way. On the other hand, the non-Fourier heat equation is complex and involves various unknowns compared to the Fourier heat equation. Fourier and Non-Fourier heat equations have proved their reliability in the case of laser-metallic materials, electron beam-biological and -inorganic materials, laser-semiconducting materials, and laser-graphene material interactions. It has been identified that the material properties, electron-phonon relaxation time, and Eigen Values play an essential role in defining the precise results of Fourier and non-Fourier heat equations. In the case of laser-graphene interaction, a restriction has been identified from ITT. When computations are carried out for attosecond pulse durations, the laser wavelength approaches the nucleus-first electron separation distance, resulting in meaningless results.

7.
Materials (Basel) ; 14(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33579005

RESUMEN

In this study, a rigorous analytical solution to the thermal nonlinear Klein-Gordon equation in the Kozlowski version is provided. The Klein-Gordon heat equation is solved via the Zhukovsky "state-of-the-art" mathematical techniques. Our study can be regarded as an initial approximation of attosecond laser-particle interaction when the prevalent phenomenon is photon-electron interaction. The electrons interact with the laser beam, which means that the nucleus does not play a significant role in temperature distribution. The particle is supposed to be homogenous with respect to thermophysical properties. This theoretical approach could prove useful for the study of metallic nano-/micro-particles interacting with attosecond laser pulses. Specific applications for Au "nano" particles with a 50 nm radius and "micro" particles with 110, 130, 150, and 1000 nm radii under 100 attosecond laser pulse irradiation are considered. First, the cross-section is supposed to be proportional to the area of the particle, which is assumed to be a perfect sphere of radius R or a rotation ellipsoid. Second, the absorption coefficient is calculated using a semiclassical approach, taking into account the number of atoms per unit volume, the classical electron radius, the laser wavelength, and the atomic scattering factor (10 in case of Au), which cover all the basic aspects for the interaction between the attosecond laser and a nanoparticle. The model is applicable within the 100-2000 nm range. The main conclusion of the model is that for a range inferior to 1000 nm, a competition between ballistic and thermal phenomena occurs. For values in excess of 1000 nm, our study suggests that the thermal phenomena are dominant. Contrastingly, during the irradiation with fs pulses, this value is of the order of 100 nm. This theoretical model's predictions could be soon confirmed with the new EU-ELI facilities in progress, which will generate pulses of 100 as at a 30 nm wavelength.

8.
Nanomaterials (Basel) ; 10(7)2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-32635621

RESUMEN

A Multiple-Temperature Model is proposed to describe the flash laser irradiation of a single layer of graphene. Zhukovsky's mathematical approach is applied to solve the Fourier heat equations based upon quantum concepts, including heat operators. Easy solutions were inferred with respect to classical mathematics. Thus, simple equations were set for the electrons and phonon temperatures in the case of flash laser treatment of a single layer of graphene. Our method avoids the difficulties and extensive time-consuming nonequilibrium green function method or quantum field theories when applied in a condensed matter. Simple expressions were deduced that could prove useful for researchers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...