Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 7873, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188678

RESUMEN

At the northern Cascadia subduction zone, the subducting Explorer and Juan de Fuca plates interact across a transform deformation zone, known as the Nootka fault zone (NFZ). This study continues the Seafloor Earthquake Array Japan Canada Cascadia Experiment to a second phase (SeaJade II) consisting of nine months of recording of earthquakes using ocean-bottom and land-based seismometers. In addition to mapping the distribution of seismicity, including an MW 6.4 earthquake and aftershocks along the previously unknown Nootka Sequence Fault, we also conducted seismic tomography, which delineates the geometry of the shallow subducting Explorer plate (ExP). We derived hundreds of high-quality focal mechanism solutions from the SeaJade II data. The mechanisms manifest a complex regional tectonic state, with normal faulting of the ExP west of the NFZ, left-lateral strike-slip behaviour of the NFZ, and reverse faulting within the overriding plate above the subducting Juan de Fuca plate. Using data from the combined SeaJade I and II catalogs, we have performed double-difference hypocentre relocations and found seismicity lineations to the southeast of, and oriented 18° clockwise from, the subducted NFZ, which we interpret to represent less active small faults off the primary faults of the NFZ. These lineations are not optimally oriented for shear failure in the regional stress field, which we inferred from averaged focal mechanism solutions, and may represent paleo-configurations of the NFZ. Further, active faults interpreted from seismicity lineations within the subducted plate, including the Nootka Sequence Fault, may have originated as conjugate faults within the paleo-NFZ.

2.
Sci Rep ; 11(1): 2797, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531541

RESUMEN

A ship-based seismic survey was conducted close to a fiber-optic submarine cable, and 50 km-long distributed acoustic sensing (DAS) recordings with air-gun shots were obtained for the first time. We examine the acquired DAS dataset together with the co-located hydrophones to investigate the detection capability of underwater acoustic (hydroacoustic) signals. Here, we show the hydroacoustic signals identified by the DAS measurement characterizing in frequency-time space. The DAS measurement can be sensitive for hydroacoustic signals in a frequency range from [Formula: see text] to a few tens of Hz which is similar to the hydrophones. The observed phases of hydroacoustic signals are coherent within a few kilometers along the submarine cable, suggesting the DAS is suitable for applying correlation analysis using hydroacoustic signals. Although our study suggests that virtual sensor's self-noise of the present DAS measurement is relatively high compared to the conventional in-situ hydroacoustic sensors above a few Hz, the DAS identifies the ocean microseismic background noise along the entire submarine cable except for some cable sections de-coupled from the seafloor.

3.
Sci Rep ; 10(1): 11607, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665634

RESUMEN

Since the giant 2011 Tohoku earthquake and tsunami, much research has focused on the distribution of coseismic slip at shallow depths during this subduction megathrust event. Here we present seismic images obtained in the immediate vicinity of the trench axis, that show thrust faults and fold-and-thrust type deformation structures near the epicenter of the 2011 Tohoku earthquake where the large coseismic slip has been inferred, and chaotic structure and the absence of thrust faults in northern and southern source areas. Seismic profiles show evidence of slope failures of the trench inner wall in a proposed tsunami source region around 39°-40° N, where the slips estimated from previous studies are in disagreement. Our results show that structural characteristics in the trench axis may be related to the occurrence of shallow megathrust slip and tsunamigenesis in the Japan Trench.

4.
Nat Commun ; 6: 6132, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25635384

RESUMEN

Excitations of seismic background noises are mostly related to fluid disturbances in the atmosphere, ocean and the solid Earth. Earthquakes have not been considered as a stationary excitation source because they occur intermittently. Here we report that acoustic-coupled Rayleigh waves (at 0.7-2.0 Hz) travelling in the ocean and marine sediments, retrieved by correlating ambient noise on a hydrophone array deployed through a shallow to deep seafloor (100-4,800 m) across the Nankai Trough, Japan, are incessantly excited by nearby small earthquakes. The observed cross-correlation functions and 2D numerical simulations for wave propagation through a laterally heterogeneous ocean-crust system show that, in a subduction zone, energetic wave sources are located primarily under the seafloor in directions consistent with nearby seismicity, and secondarily in the ocean. Short-period background noise in the ocean-crust system in the Nankai subduction zone is mainly attributed to ocean-acoustic Rayleigh waves of earthquake origin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...