Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893150

RESUMEN

Immunotherapy is a rapidly advancing field of research in the treatment of conditions such as cancer and autoimmunity. Nanomaterials can be designed for immune system manipulation, with precise targeted delivery and improved immunomodulatory efficacy. Here, we elaborate on various strategies using nanomaterials, including liposomes, polymers, and inorganic NPs, and discuss their detailed design intricacies, mechanisms, and applications, including the current regulatory issues. This type of nanomaterial design for targeting specific immune cells or tissues and controlling release kinetics could push current technological frontiers and provide new and innovative solutions for immune-related disorders and diseases without off-target effects. These materials enable targeted interactions with immune cells, thereby enhancing the effectiveness of checkpoint inhibitors, cancer vaccines, and adoptive cell therapies. Moreover, they allow for fine-tuning of immune responses while minimizing side effects. At the intersection of nanotechnology and immunology, nanomaterial-based platforms have immense potential to revolutionize patient-centered immunotherapy and reshape disease management. By prioritizing safety, customization, and compliance with regulatory standards, these systems can make significant contributions to precision medicine, thereby significantly impacting the healthcare landscape.

2.
Ther Deliv ; 15(2): 109-118, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38214106

RESUMEN

Aim: This study aims to assess the efficacy of free and niosomes-loaded paclitaxel combined with the anti-diabetic drug metformin. Methods: Paclitaxel was successfully encapsulated in all niosome formulations, using microfluidic mixing, with a maximum encapsulation efficiency of 11.9%. Results: The half maximal inhibitory concentration (IC50) for free paclitaxel in T47D cells was significantly reduced from 0.2 to 0.048 mg/ml when combined with metformin 40 mg. The IC50 of paclitaxel was significantly reduced when loaded in niosomes to less than 0.06 mg/ml alone or with metformin. Conclusion: Paclitaxel combination (free or loaded into niosomes) with metformin significantly improved the anticancer efficacy of paclitaxel, which can serve as a method to reduce the paclitaxel dose and its associated side effects.


Asunto(s)
Metformina , Paclitaxel , Paclitaxel/farmacología , Liposomas , Composición de Medicamentos , Línea Celular Tumoral
3.
Gene ; 905: 148174, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38242374

RESUMEN

The intersection of mathematical modeling, nanotechnology, and epidemiology marks a paradigm shift in our battle against infectious diseases, aligning with the focus of the journal on the regulation, expression, function, and evolution of genes in diverse biological contexts. This exploration navigates the intricate dance of viral transmission dynamics, highlighting mathematical models as dual tools of insight and precision instruments, a theme relevant to the diverse sections of Gene. In the context of virology, ethical considerations loom large, necessitating robust frameworks to protect individual rights, an aspect essential in infectious disease research. Global collaboration emerges as a critical pillar in our response to emerging infectious diseases, fortified by the predictive prowess of mathematical models enriched by nanotechnology. The synergy of interdisciplinary collaboration, training the next generation to bridge mathematical rigor, biology, and epidemiology, promises accelerated discoveries and robust models that account for real-world complexities, fostering innovation and exploration in the field. In this intricate review, mathematical modeling in viral transmission dynamics and epidemiology serves as a guiding beacon, illuminating the path toward precision interventions, global preparedness, and the collective endeavor to safeguard human health, resonating with the aim of advancing knowledge in gene regulation and expression.


Asunto(s)
Enfermedades Transmisibles , Humanos , Enfermedades Transmisibles/epidemiología , Modelos Teóricos , Matemática
4.
Technol Cancer Res Treat ; 22: 15330338231168016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138532

RESUMEN

Recently, much research is focused on the use of photothermal therapy (PTT) as an advanced method to treat various types of cancer. The PTT approach primarily utilizes nanoparticles (NPs) made from metals, carbon, or semiconductors that can convert near-infrared laser irradiation, which penetrates tissues, into local heat that induces cancer cell death. An alternative approach is to utilize NPs (such as liposomes) to carry suitable dye molecules to the same end. Numerous studies concerning PTT have shown that local heat released in cancer cells may suppress the expression of membrane transporter proteins such as P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1), thus enhancing cytotoxicity and reverse multidrug resistance. In addition, because NPs may be loaded with different substances, researchers have designed multifunctional NPs for PTT by including several agents such as membrane transporter modulators, anticancer drugs, and photothermal agents. This review will focus on the recent advances in PTT utilizing various types of NPs, and their components and characteristics. In addition, the role of membrane transporters in PTT will be highlighted and different methods of transporter modulation will be summarized from several PTT studies in which multifunctional NPs were used to treat cancers in vitro and in vivo.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Línea Celular Tumoral , Fototerapia/métodos , Rayos Infrarrojos , Proteínas de Transporte de Membrana , Neoplasias/terapia
5.
Int J Pharm X ; 5: 100168, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36852395

RESUMEN

The aim of this work was to assess the impact of solvent selection on the characteristics of niosomes prepared by microfluidic mixing. To achieve this, niosomes were manufactured using bench-scale microfluidic mixing systems by changing the type of aqueous and/or organic solvents used to prepare the particles. Niosomes were prepared using different non-ionic surfactants and cholesterol compositions with different solvents and evaluated to investigate the influence of organic and aqueous solvents on the particle's physiochemical characteristics. Here we demonstrated that the solvent selection is a key factor to be considered during the preparation of niosomes with microfluidic mixing. The type of organic solvent was shown to significantly affect the size and the size distribution of the prepared particles. In general, niosome size increased with increasing organic solvent polarity, without affecting the niosomes stability. Moreover, changing the aqueous solvent used to hydrate the lipid components significantly (p < 0.05) affected the characteristics of the prepared niosomes in terms of particles size, size distribution, and surface charge. This impact of solvent selection on the final product is dependent on the lipid components where niosomes prepared with different compositions will have different characteristics when changing the type of organic and/or aqueous solvents. The apparent encapsulation efficiency of quinine as a model hydrophobic drug was subsequently shown to be significantly (p < 0.05) affected by the type of the organic solvent used to prepare the niosomes, while the impact of the organic solvent had less impact on the apparent encapsulation of atenolol as a model hydrophilic drug.

6.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768330

RESUMEN

Nanomaterials have been the focus of intensive development and research in the medical and industrial sectors over the past several decades. Some studies have found that these compounds can have a detrimental impact on living organisms, including their cellular components. Despite the obvious advantages of using nanomaterials in a wide range of applications, there is sometimes skepticism caused by the lack of substantial proof that evaluates potential toxicities. The interactions of nanoparticles (NPs) with cells of the immune system and their biomolecule pathways are an area of interest for researchers. It is possible to modify NPs so that they are not recognized by the immune system or so that they suppress or stimulate the immune system in a targeted manner. In this review, we look at the literature on nanomaterials for immunostimulation and immunosuppression and their impact on how changing the physicochemical features of the particles could alter their interactions with immune cells for the better or for the worse (immunotoxicity). We also look into whether the NPs have a unique or unexpected (but desired) effect on the immune system, and whether the surface grafting of polymers or surface coatings makes stealth nanomaterials that the immune system cannot find and get rid of.


Asunto(s)
Nanopartículas , Nanoestructuras , Nanoestructuras/toxicidad , Nanopartículas/química , Sistema Inmunológico , Polímeros/química , Inmunización
7.
Curr Drug Deliv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36815647

RESUMEN

Despite the technological advancement in the era of personalized medicine and therapeutics development, infectious parasitic causative agents remain one of the most challenging areas of research and development. The disadvantages of conventional parasitic prevention and control are the emergence of multiple drug resistance as well as the non-specific targeting of intracellular parasites, which results in high dose concentration needs and subsequently intolerable cytotoxicity. Nanotechnology has attracted extensive interest to reduce medication therapy adverse effects including poor bioavailability and drug selectivity. Numerous nanomaterials-based delivery systems have previously been shown in animal models to be effective in the treatment of various parasitic infections. This review discusses a variety of nanomaterials-based antiparasitic procedures and techniques as well as the processes that allow them to be targeted to different parasitic infections. This review focuses on the key prerequisites for creating novel nanotechnology-based carriers as a potential option in parasite management, specifically in the context of human-related pathogenic parasitic agents.

8.
J Liposome Res ; 33(1): 53-64, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35699160

RESUMEN

Curcumin is a natural component extracted from the rhizomes of turmeric (Curcuma longa), a natural plat with known medicinal uses for more than 4000 years. Most turmeric therapeutic effects are attributed to curcumin, a yellow-coloured extract. Curcumin has received considerable attention due to its biological activities, such as its use in arthritis, liver and neurodegenerative diseases, obesity, and several types of cancers. Most of these curcumin therapeutic activities are related to its antioxidant and anti-inflammatory effects. However, the clinical application of curcumin is hampered by some limitations that prevent its extensive clinical application. Curcumin high hydrophobicity of curcumin and limited water solubility are among the most important limitations. This poor solubility will result in low bioavailability due to its poor absorption into plasma and the target tissues. Curcumin also has rapid metabolism, which will significantly lower its bioavailability and shorten its half-life. Moreover, curcumin is photosensitive with limited chemical stability during manufacturing and storage. These limitations have been overcome by applying nanotechnology using several types of nanoparticles (NPs). This includes using NPs such as liposomes, niosomes, gold nanoparticles, and many others to improve the curcumin solubility and bioavailability. This review focuses on the different types of NPs investigated and the outcomes generated by their use in the most recent studies in this field. To follow the latest advances in the field of site-specific drug delivery using nanomaterials, an electronic databases search was conducted using PubMed, Google scholar and Scopus using the following keywords: lipid-based nanoparticles, curcumin delivery, niosomes, and liposomes.


Asunto(s)
Curcumina , Nanopartículas del Metal , Curcumina/uso terapéutico , Liposomas , Oro , Sistemas de Liberación de Medicamentos
9.
Drug Discov Today ; 28(2): 103458, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36427779

RESUMEN

Given their superior efficacy, rapid engineering, low-cost manufacturing, and safe delivery prospects, mRNA vaccines offer an intriguing alternative to conventional vaccination technologies. Several mRNA vaccine platforms targeting infectious diseases and various types of cancer have exhibited beneficial results both in vivo and in vitro. Issues related to mRNA stability and immunogenicity have been addressed. Current mRNA vaccines can generate robust immune responses, without being constrained by the major histocompatibility complex (MHC) haplotype of the recipient. Given that mRNA vaccinations are the only transient genetic information carriers, they are also safe. In this review, we provide an update and overview on mRNA vaccines, including their current state, and the problems that have prevented them from being used in more general therapeutic ways.


Asunto(s)
Vacunas Sintéticas , Vacunas de ARNm , ARN Mensajero/genética , Desarrollo de Vacunas
10.
Int J Pharm X ; 4: 100137, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36386005

RESUMEN

Lipid nanoparticles have gained much attention due to their potential as drug delivery systems. They are safe, effective, and be targeted to particular tissues to deliver their payload. Niosomes are one type of lipid nanoparticles that comprise non-ionic surfactants which have proven to be effective due to their stability and biocompatibility. Different manufacturing processes have been reported for niosome preparation, but many of them are not scalable or reproducible for pharmaceutical use. In this study, microfluidic mixing was used to prepare niosomes with different lipid compositions by changing the type of non-ionic surfactant. Niosomes were evaluated for their physicochemical characteristics, morphology, encapsulation efficacy, release profiles of atenolol as a model hydrophilic compound, and cytotoxic activities. Microfluidic mixing allows for particle self-assembly and drug loading in a single step, without the need for post-preparation size reduction. Depending on the lipid composition, the empty particles were <90 nm in size with a uniform distribution. A slight but not significant increase in these values was observed when loading atenolol in most of the prepared formulations. All formulations were spherical and achieved variable levels of atenolol encapsulation. Atenolol release was slow and followed the Korsmeyer-Peppas model regardless of the surfactant type or the percentage of cholesterol used.

11.
Microb Pathog ; 173(Pt A): 105799, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36182078

RESUMEN

The detection of >400 Monkeypox virus cases in the month of May 2022 and increase to 57,527. confirmed cases by September 9th, 2022, across the world, emphasizes the need of new therapeutics for this emerging viral epidemic in humans. Largely the cases seen in Europe, Australia and America are among men who have sex with men making transmission through intimate contact with infectious skin lesions the likely mode of transmission. This implies that this high human-to-human transmission observed in the young Caucasian clusters, and the probable community transmission without any history of travelling to endemic areas would suggest that the epidemic is likely to be sustained human-to-human transmission and unlikely one that would be a short-lasting epidemic. This might necessitate the need for new therapeutic approaches and agents for prophylaxis and treatment of acute infections which is the focus of this review article.


Asunto(s)
Mpox , Minorías Sexuales y de Género , Vacunas , Masculino , Humanos , Mpox/tratamiento farmacológico , Mpox/epidemiología , Mpox/prevención & control , Antivirales/uso terapéutico , Homosexualidad Masculina
12.
Microb Pathog ; 173(Pt A): 105794, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36179973

RESUMEN

INTRODUCTION: A monkeypox outbreak is spreading in territories where the virus is not generally prevalent. The rapid and sudden emergence of monkeypox in numerous nations at the same time means that unreported transmission may have persisted. The number of reported cases is on a constant increase worldwide. At least 20 non-African countries, like Canada, Portugal, Spain, and the United Kingdom, have reported more than 57662 as of September 9th suspected or confirmed cases. This is the largest epidemic seen outside of Africa. Scientists are struggling to determine the responsible genes for the higher virulence and transmissibility of the virus. Because the viruses are related, several countries have begun acquiring smallpox vaccinations, which are believed to be very effective against monkeypox. METHODS: Bibliographic databases and web-search engines were used to retrieve studies that assessed monkeypox basic biology, life cycle, and transmission. Data were evaluated and used to explain the therapeutics that are under use or have potential. Finally, here is a comparison between how vaccines are being made now and how they were made in the past to stop the spread of new viruses. CONCLUSIONS: Available vaccines are believed to be effective if administered within four days of viral exposure, as the virus has a long incubation period. As the virus is zoonotic, there is still a great deal of concern about the viral genetic shift and the risk of spreading to humans. This review will discuss the virus's biology and how dangerous it is. It will also look at how it spreads, what vaccines and treatments are available, and what technologies could be used to make vaccines quickly using mRNA technologies.


Asunto(s)
Epidemias , Mpox , Humanos , Monkeypox virus/genética , Mpox/epidemiología , Mpox/prevención & control , Brotes de Enfermedades , Vacunación
13.
Pharm Nanotechnol ; 10(4): 257-267, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35980061

RESUMEN

BACKGROUND: Naturally occurring protein cages, both viral and non-viral assemblies, have been developed for various pharmaceutical applications. Protein cages are ideal platforms as they are compatible, biodegradable, bioavailable, and amenable to chemical and genetic modification to impart new functionalities for selective targeting or tracking of proteins. The ferritin/ apoferritin protein cage, plant-derived viral capsids, the small Heat shock protein, albumin, soy and whey protein, collagen, and gelatin have all been exploited and characterized as drugdelivery vehicles. Protein cages come in many shapes and types with unique features such as unmatched uniformity, size, and conjugations. OBJECTIVES: The recent strategic development of drug delivery will be covered in this review, emphasizing polymer-based, specifically protein-based, drug delivery nanomedicine platforms. The potential and drawbacks of each kind of protein-based drug-delivery system will also be highlighted. METHODS: Research examining the usability of nanomaterials in the pharmaceutical and medical sectors were identified by employing bibliographic databases and web search engines. RESULTS: Rings, tubes, and cages are unique protein structures that occur in the biological environment and might serve as building blocks for nanomachines. Furthermore, numerous virions can undergo reversible structural conformational changes that open or close gated pores, allowing customizable accessibility to their core and ideal delivery vehicles. CONCLUSION: Protein cages' biocompatibility and their ability to be precisely engineered indicate they have significant potential in drug delivery and intracellular administration.


Asunto(s)
Nanomedicina , Nanoestructuras , Sistemas de Liberación de Medicamentos , Proteínas/química , Preparaciones Farmacéuticas
14.
Ther Deliv ; 13(6): 321-338, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35924586

RESUMEN

Protein nanomaterials are well-defined, hollow protein nanoparticles comprised of virus capsids, virus-like particles, ferritin, heat shock proteins, chaperonins and many more. Protein-based nanomaterials are formed by the self-assembly of protein subunits and have numerous desired properties as drug-delivery vehicles, including being optimally sized for endocytosis, nontoxic, biocompatible, biodegradable and functionalized at three separate interfaces (external, internal and intersubunit). As a result, protein nanomaterials have been intensively investigated as functional entities in bionanotechnology, including drug delivery, nanoreactors and templates for organic and inorganic nanomaterials. Several variables influence efficient administration, particularly active targeting, cellular uptake, the kinetics of the release and systemic elimination. This review examines the wide range of medicines, loading/release processes, targeted therapies and treatment effectiveness.


Asunto(s)
Nanopartículas , Nanoestructuras , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Proteínas
15.
Molecules ; 27(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35335190

RESUMEN

Advanced innovations for combating variants of aggressive breast cancer and overcoming drug resistance are desired. In cancer treatment, ZnO nanoparticles (NPs) have the capacity to specifically and compellingly activate apoptosis of cancer cells. There is also a pressing need to develop innovative anti-cancer therapeutics, and recent research suggests that ZnO nanoparticles hold great potential. Here, the in vitro chemical effectiveness of ZnO NPs has been tested. Zinc oxide (ZnO) nanoparticles were synthesized using Citrullus colocynthis (L.) Schrad by green methods approach. The generated ZnO was observed to have a hexagonal wurtzite crystal arrangement. The generated nanomaterials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible spectroscopy. The crystallinity of ZnO was reported to be in the range 50-60 nm. The NPs morphology showed a strong absorbance at 374 nm with an estimated gap band of 3.20 eV to 3.32 eV. Microscopy analysis proved the morphology and distribution of the generated nanoparticles to be around 50 nm, with the elemental studies showing the elemental composition of ZnO and further confirming the purity of ZnO NPs. The cytotoxic effect of ZnO NPs was evaluated against wild-type and doxorubicin-resistant MCF-7 and MDA-MB-231 breast cancer cell lines. The results showed the ability of ZnO NPs to inhibit the prefoliation of MCF-7 and MDA-MB-231 prefoliation through the induction of apoptosis without significant differences in both wild-type and resistance to doxorubicin.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Óxido de Zinc , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Tecnología Química Verde/métodos , Humanos , Nanopartículas/química , Extractos Vegetales/química , Difracción de Rayos X , Óxido de Zinc/química
16.
Ther Deliv ; 13(3): 187-203, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35195017

RESUMEN

As SARS-CoV-2 emerge, variants such as Omicron (B.1.1.529), Delta (B.1.617.2), and those from the United Kingdom (B.1.1.7), South Africa (B.1.351), Brazil (P.1) and India (B.1.6.17 lineage) have raised concerns of the reduced neutralising ability of antibodies and increased ability to evade the current six approved COVID-19 vaccine candidates. This viewpoint advocates for countries to conduct prior efficacy studies before they embark on mass vaccination and addresses the role of nanoparticles as carrier vehicles for these vaccines with a view to explore the present challenges and forge a path for a stronger and more viable future for the development of vaccines for SARS-CoV-2 and future pandemics. We also look at the emerging prophylactics and therapeutics in the light of ongoing cases of severe and critical COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Vacunología
17.
Eur J Pharm Biopharm ; 171: 11-18, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34990784

RESUMEN

In this study, the use of a microwave reactor, which allowed high input of energy into a pressurised system in a short period of time, was investigated for preparation of lipid nanoparticles (LNPs). The aim was to optimise the formulation process by reducing manufacturing time. Two types of LNPs were prepared; non-ionic surfactant vesicles (NISV) and bilosomes (modified NISV incorporating bile salts), with a model antigen (tetanus toxoid, TT) and the immune response induced after mucosal (nasal and oral, respectively) administration was assessed. The TT loaded LNPs were characterised in terms of particle size, size distribution, morphology, and entrapment efficiency. Immunisation was evaluated by lethal challenge with tetanus toxin in an animal model. The efficiency of vaccination was evaluated by measuring the anti-TT IgG antibody levels in the vaccinated animals. Bilosomes formed by this method showed an immunogen entrapment efficiency of ∼30% which was significantly (p < 0.05) higher than entrapment efficiency in the NISV. The percentage of animals that survived when challenged with tetanus toxin correlated with the level of IgG determined in the serum of mice immunised with LNPs by the mucosal route. Moreover, there were significant (p < 0.05) differences between orally and nasally immunised groups. Animal groups immunised bilosomes via the oral route showed the highest level of IgG (1.2 ± 0.13) compared to the positive control, LN + Xn, and no immunised group. Similarly, groups immunised via the nasal route showed significantly (p < 0.0001) higher titres compared with the control group. Mucosal TT was capable of inducing systemic specific IgG anti-TT responses that were higher than the parenteral vaccine.


Asunto(s)
Portadores de Fármacos , Liposomas , Membrana Mucosa/metabolismo , Nanopartículas , Toxoide Tetánico/farmacocinética , Administración Intranasal , Administración Oral , Animales , Inmunización , Inmunoglobulina G/inmunología , Ratones , Microondas , Modelos Animales , Toxoide Tetánico/administración & dosificación , Toxoide Tetánico/química , Toxoide Tetánico/inmunología
18.
Int J Nanomedicine ; 16: 7639-7661, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34819727

RESUMEN

BACKGROUND: Staphylococcus aureus is an important human pathogen, especially causing skin and soft tissue infections (SSTIs). Over the decades, the infections caused by antibiotic-resistant strains have often become life-threatening. Consequently, exploration and development of competent approaches to combat these serious circumstances are urgently required. METHODS: The antibacterial activity of melittin (Mel) on S. aureus, methicillin-resistant S. aureus (MRSA) and clinical isolates of vancomycin-intermediate S. aureus (VISA) was investigated by minimum inhibitory concentration (MIC) and time-killing assays. The localization of Mel on the bacterial cell was visualized by confocal laser scanning microscopy and its effect on the membrane was indicated based on propidium iodide uptake. The non-ionic surfactant vesicle (NISV) or niosome nanocarrier was established for Mel loading (Mel-loaded NISV) by the thin-film hydration method. Physicochemical and in vitro biological properties of Mel-loaded NISVs were characterized. The cellular uptake of Mel-loaded NISVs was evaluated by holotomography analysis. In addition, an ex vivo study was conducted on a porcine ear skin model to assess the permeation ability of Mel-loaded NISVs and their potential to inhibit bacterial skin infection. RESULTS: The effective inhibitory activity of Mel on skin pathogens was demonstrated. Among the tested strains, VISA was most susceptible to Mel. Regarding to its function, Mel targeted the bacterial cell envelope and disrupted cell membrane integrity. Mel-loaded NISVs were successfully fabricated with a nano-size of 120-200 nm and entrapment efficiency of greater than 90%. Moreover, Mel-loaded NISVs were taken up and accumulated in the intracellular space. Meanwhile, Mel was released and distributed throughout the cytosol and nucleus. Mel-loaded NISVs efficiently inhibited the growth of bacteria, particularly MRSA and VISA. Importantly, they not only penetrated epidermal and dermal skin layers, but also reduced the bacterial growth in infected skin. CONCLUSION: Mel-loaded NISVs have a great potential to exhibit antibacterial activity. Therapeutic application of Mel-loaded NISVs could be further developed as an alternative platform for the treatment of skin infection via dermal and transdermal delivery.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Infecciones Cutáneas Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Meliteno , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus , Porcinos , Staphylococcus aureus Resistente a Vancomicina
19.
Methods Mol Biol ; 2265: 621-634, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33704743

RESUMEN

RNA interference (RNAi) is a posttranscriptional regulatory mechanism that employs siRNA. It typically results in the degradation of a target mRNA that encodes a particular protein. Treatment with siRNA therapeutics requires the use of an effective drug delivery system to assist in delivering these therapeutics into the cytoplasm of the transfected cells. Here we describe the transfection of melanoma cancer cells with siRNA using cationic niosome nanoparticles as a delivery system. The method of niosome preparation is first introduced and is followed by complex formation with siRNA and the transfection method.


Asunto(s)
Melanoma , Nanopartículas , ARN Interferente Pequeño , Transfección , Humanos , Liposomas , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Melanoma/terapia , Nanopartículas/química , Nanopartículas/uso terapéutico , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacología
20.
Methods Mol Biol ; 2265: 591-620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33704742

RESUMEN

Melanoma accounts for 4% of all skin cancer malignancies, with only 14% of diagnosed patients surviving for more than 5 years after diagnosis. Until now, there is no clear understanding of the detailed molecular contributors of melanoma pathogenesis. Accordingly, more research is needed to understand melanoma development and prognosis.All the treatment approaches that are currently applied have several significant limitations that prevent effective use in melanoma. One major limitation in the treatment of cancer is the acquisition of multidrug resistance (MDR). The MDR results in significant treatment failure and poor clinical outcomes in several cancers, including skin cancer. Treatment of melanoma is especially retarded by MDR. Despite the current advances in targeted and immune-mediated therapy, treatment arms of melanoma are severely limited and stand as a significant clinical challenge. Further, the poor pharmacokinetic profile of currently used chemotherapeutic agents is another reason for treatment failure. Therefore, more research is needed to develop novel drugs and carrier tools for more effective and targeted treatment.Nucleic acid therapy is based on nucleic acids or chemical compounds that are closely related, such as antisense oligonucleotides, aptamers, and small-interfering RNAs that are usually used in situations when a specific gene implicated in a disorder is deemed a therapeutically beneficial target for inhibition. However, the proper application for nucleic acid therapies is hampered by the development of an effective delivery system that can maintain their stability in the systemic circulation and enhance their uptake by the target cells. In this chapter, the prognosis of the different types of melanoma along with the currently used medications is highlighted, and the different types of nucleic acids along with the currently available nanoparticle systems for delivering these nucleic acids into melanoma cells are discussed. We also discuss recently conducted research on the use of different types of nanoparticles for nucleic acid delivery into melanoma cells and highlight the most significant outcomes.


Asunto(s)
Antineoplásicos , Sistemas de Liberación de Medicamentos , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Melanoma/tratamiento farmacológico , Nanopartículas , Ácidos Nucleicos , Neoplasias Cutáneas/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Nanopartículas/química , Nanopartículas/uso terapéutico , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...