Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 151(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38381702

RESUMEN

The liver restores its mass and architecture after injury. Yet, investigating morphogenetic cell behaviours and signals that repair tissue architecture at high spatiotemporal resolution remains challenging. We developed LiverZap, a tuneable chemoptogenetic liver injury model in zebrafish. LiverZap employs the formation of a binary FAP-TAP photosensitiser followed by brief near-infrared illumination inducing hepatocyte-specific death and recapitulating mammalian liver injury types. The tool enables local hepatocyte ablation and extended live imaging capturing regenerative cell behaviours, which is crucial for studying cellular interactions at the interface of healthy and damaged tissue. Applying LiverZap, we show that targeted hepatocyte ablation in a small region of interest is sufficient to trigger local liver progenitor-like cell (LPC)-mediated regeneration, challenging the current understanding of liver regeneration. Surprisingly, the LPC response is also elicited in adjacent uninjured tissue, at up to 100 µm distance to the injury. Moreover, dynamic biliary network rearrangement suggests active cell movements from uninjured tissue in response to substantial hepatocyte loss as an integral step of LPC-mediated liver regeneration. This precisely targetable liver cell ablation tool will enable the discovery of key molecular and morphogenetic regeneration paradigms.


Asunto(s)
Sistema Biliar , Pez Cebra , Animales , Regeneración Hepática/fisiología , Hepatocitos , Hígado/metabolismo , Mamíferos
2.
PLoS Biol ; 21(10): e3002315, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792696

RESUMEN

To meet the physiological demands of the body, organs need to establish a functional tissue architecture and adequate size as the embryo develops to adulthood. In the liver, uni- and bipotent progenitor differentiation into hepatocytes and biliary epithelial cells (BECs), and their relative proportions, comprise the functional architecture. Yet, the contribution of individual liver progenitors at the organ level to both fates, and their specific proportion, is unresolved. Combining mathematical modelling with organ-wide, multispectral FRaeppli-NLS lineage tracing in zebrafish, we demonstrate that a precise BEC-to-hepatocyte ratio is established (i) fast, (ii) solely by heterogeneous lineage decisions from uni- and bipotent progenitors, and (iii) independent of subsequent cell type-specific proliferation. Extending lineage tracing to adulthood determined that embryonic cells undergo spatially heterogeneous three-dimensional growth associated with distinct environments. Strikingly, giant clusters comprising almost half a ventral lobe suggest lobe-specific dominant-like growth behaviours. We show substantial hepatocyte polyploidy in juveniles representing another hallmark of postembryonic liver growth. Our findings uncover heterogeneous progenitor contributions to tissue architecture-defining cell type proportions and postembryonic organ growth as key mechanisms forming the adult liver.


Asunto(s)
Hígado , Pez Cebra , Animales , Linaje de la Célula , Hígado/metabolismo , Hepatocitos/metabolismo , Células Epiteliales , Diferenciación Celular , Proliferación Celular
3.
Elife ; 122023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36648336

RESUMEN

The nucleoporin (NUP) ELYS, encoded by AHCTF1, is a large multifunctional protein with essential roles in nuclear pore assembly and mitosis. Using both larval and adult zebrafish models of hepatocellular carcinoma (HCC), in which the expression of an inducible mutant kras transgene (krasG12V) drives hepatocyte-specific hyperplasia and liver enlargement, we show that reducing ahctf1 gene dosage by 50% markedly decreases liver volume, while non-hyperplastic tissues are unaffected. We demonstrate that in the context of cancer, ahctf1 heterozygosity impairs nuclear pore formation, mitotic spindle assembly, and chromosome segregation, leading to DNA damage and activation of a Tp53-dependent transcriptional programme that induces cell death and cell cycle arrest. Heterozygous expression of both ahctf1 and ranbp2 (encoding a second nucleoporin), or treatment of heterozygous ahctf1 larvae with the nucleocytoplasmic transport inhibitor, Selinexor, completely blocks krasG12V-driven hepatocyte hyperplasia. Gene expression analysis of patient samples in the liver hepatocellular carcinoma (LIHC) dataset in The Cancer Genome Atlas shows that high expression of one or more of the transcripts encoding the 10 components of the NUP107-160 subcomplex, which includes AHCTF1, is positively correlated with worse overall survival. These results provide a strong and feasible rationale for the development of novel cancer therapeutics that target ELYS function and suggest potential avenues for effective combinatorial treatments.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Hiperplasia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Development ; 149(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35980363

RESUMEN

Visualizing cell shapes and interactions of differentiating cells is instrumental for understanding organ development and repair. Across species, strategies for stochastic multicolour labelling have greatly facilitated in vivo cell tracking and mapping neuronal connectivity. Yet integrating multi-fluorophore information into the context of developing zebrafish tissues is challenging given their cytoplasmic localization and spectral incompatibility with common fluorescent markers. Inspired by Drosophila Raeppli, we developed FRaeppli (Fish-Raeppli) by expressing bright membrane- or nuclear-targeted fluorescent proteins for efficient cell shape analysis and tracking. High spatiotemporal activation flexibility is provided by the Gal4/UAS system together with Cre/lox and/or PhiC31 integrase. The distinct spectra of the FRaeppli fluorescent proteins allow simultaneous imaging with GFP and infrared subcellular reporters or tissue landmarks. We demonstrate the suitability of FRaeppli for live imaging of complex internal organs, such as the liver, and have tailored hyperspectral protocols for time-efficient acquisition. Combining FRaeppli with polarity markers revealed previously unknown canalicular topologies between differentiating hepatocytes, reminiscent of the mammalian liver, suggesting common developmental mechanisms. The multispectral FRaeppli toolbox thus enables the comprehensive analysis of intricate cellular morphologies, topologies and lineages at single-cell resolution in zebrafish.


Asunto(s)
Integrasas , Pez Cebra , Animales , Animales Modificados Genéticamente , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/metabolismo , Mamíferos/metabolismo , Neuronas/metabolismo , Pez Cebra/metabolismo
5.
Commun Biol ; 5(1): 402, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488088

RESUMEN

Material properties of living matter play an important role for biological function and development. Yet, quantification of material properties of internal organs in vivo, without causing physiological damage, remains challenging. Here, we present a non-invasive approach based on modified optical tweezers for quantifying sub-cellular material properties deep inside living zebrafish embryos. Material properties of cells within the foregut region are quantified as deep as 150 µm into the biological tissue through measurements of the positions of an inert tracer. This yields an exponent, α, which characterizes the scaling behavior of the positional power spectra and the complex shear moduli. The measurements demonstrate differential mechanical properties: at the time when the developing organs undergo substantial displacements during morphogenesis, gut progenitors are more elastic (α = 0.57 ± 0.07) than the neighboring yolk (α = 0.73 ± 0.08), liver (α = 0.66 ± 0.06) and two mesodermal (α = 0.68 ± 0.06, α = 0.64 ± 0.06) progenitor cell populations. The higher elasticity of gut progenitors correlates with an increased cellular concentration of microtubules. The results infer a role of material properties during morphogenesis and the approach paves the way for quantitative material investigations in vivo of embryos, explants, or organoids.


Asunto(s)
Endodermo , Pez Cebra , Animales , Elasticidad , Hígado , Morfogénesis
6.
Nat Commun ; 10(1): 5220, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31745086

RESUMEN

The hepatopancreatic ductal (HPD) system connects the intrahepatic and intrapancreatic ducts to the intestine and ensures the afferent transport of the bile and pancreatic enzymes. Yet the molecular and cellular mechanisms controlling their differentiation and morphogenesis into a functional ductal system are poorly understood. Here, we characterize HPD system morphogenesis by high-resolution microscopy in zebrafish. The HPD system differentiates from a rod of unpolarized cells into mature ducts by de novo lumen formation in a dynamic multi-step process. The remodeling step from multiple nascent lumina into a single lumen requires active cell intercalation and myosin contractility. We identify key functions for EphB/EphrinB signaling in this dynamic remodeling step. Two EphrinB ligands, EphrinB1 and EphrinB2a, and two EphB receptors, EphB3b and EphB4a, control HPD morphogenesis by remodeling individual ductal compartments, and thereby coordinate the morphogenesis of this multi-compartment ductal system.


Asunto(s)
Conductos Biliares/metabolismo , Efrina-B1/metabolismo , Hepatopáncreas/metabolismo , Receptores de la Familia Eph/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Conductos Biliares/embriología , Diferenciación Celular/genética , Efrina-B1/genética , Efrina-B3/genética , Efrina-B3/metabolismo , Perfilación de la Expresión Génica , Hepatopáncreas/embriología , Ligandos , Morfogénesis/genética , Mutación , Unión Proteica , Receptores de la Familia Eph/genética , Transducción de Señal/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
Curr Opin Cell Biol ; 54: 106-113, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29890397

RESUMEN

Cells use different means to communicate within and between tissues and thereby coordinate their behaviours. Following the initial observations of enigmatic long filopodia unrelated to cell movement, it became clear that the roles of cellular protrusions are not restricted to sensing functions or motility and are much more diverse than previously appreciated. Advances in live-imaging and genetic tools revealed several types of non-conventional cell protrusions and their functions, ranging from tissue patterning, proliferation and differentiation control, tissue matching and cell spacing to more unexpected roles such as priming of cell adhesion as well as bidirectional coordination of tissue movements. Here, we will highlight exciting new insights into highly diverse cell behaviours elicited by protrusions and contact-dependent cell communication, essential for embryonic development across species.


Asunto(s)
Comunicación Celular , Extensiones de la Superficie Celular/metabolismo , Animales , Linaje de la Célula , Modelos Biológicos , Morfogénesis , Células Madre/citología
8.
J Hepatol ; 68(5): 1049-1062, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29339113

RESUMEN

Recent development of improved tools and methods to analyse tissues at the three-dimensional level has expanded our capacity to investigate morphogenesis of foetal liver. Here, we review the key morphogenetic steps during liver development, from the prehepatic endoderm stage to the postnatal period, and consider several model organisms while focussing on the mammalian liver. We first discuss how the liver buds out of the endoderm and gives rise to an asymmetric liver. We next outline the mechanisms driving liver and lobe growth, and review morphogenesis of the intra- and extrahepatic bile ducts; morphogenetic responses of the biliary tract to liver injury are discussed. Finally, we describe the mechanisms driving formation of the vasculature, namely venous and arterial vessels, as well as sinusoids.


Asunto(s)
Hígado/embriología , Animales , Conductos Biliares Intrahepáticos/embriología , Sistema Biliar/embriología , Células Madre Embrionarias/citología , Hepatocitos/citología , Humanos , Hígado/irrigación sanguínea , Hígado/crecimiento & desarrollo , Modelos Biológicos , Morfogénesis , Transducción de Señal
9.
Curr Top Dev Biol ; 124: 161-195, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28335859

RESUMEN

The adult liver of most vertebrates is predominantly comprised of hepatocytes. However, these cells must work in concert with biliary, stellate, vascular, and immune cells to accomplish the vast array of hepatic functions required for physiological homeostasis. Our understanding of liver development was accelerated as zebrafish emerged as an ideal vertebrate system to study embryogenesis. Through work in zebrafish and other models, it is now clear that the cells in the liver develop in a coordinated fashion during embryogenesis through a complex yet incompletely understood set of molecular guidelines. Zebrafish research has uncovered many key players that govern the acquisition of hepatic potential, cell fate, and plasticity. Although rare, some hepatobiliary diseases-especially biliary atresia-are caused by developmental defects; we discuss how research using zebrafish to study liver development has informed our understanding of and approaches to liver disease. The liver can be injured in response to an array of stressors including viral, mechanical/surgical, toxin-induced, immune-mediated, or inborn defects in metabolism. The liver has thus evolved the capacity to efficiently repair and regenerate. We discuss the emerging field of using zebrafish to study liver regeneration and highlight recent advances where zebrafish genetics and imaging approaches have provided novel insights into how cell plasticity contributes to liver regeneration.


Asunto(s)
Hepatopatías/patología , Regeneración Hepática , Hígado/embriología , Hígado/patología , Pez Cebra/embriología , Animales , Modelos Biológicos
10.
Nat Protoc ; 12(3): 581-603, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28207001

RESUMEN

This protocol describes methods for increasing and evaluating the efficiency of genome editing based on the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated 9) system, transcription activator-like effector nucleases (TALENs) or zinc-finger nucleases (ZFNs). First, Indel Detection by Amplicon Analysis (IDAA) determines the size and frequency of insertions and deletions elicited by nucleases in cells, tissues or embryos through analysis of fluorophore-labeled PCR amplicons covering the nuclease target site by capillary electrophoresis in a sequenator. Second, FACS enrichment of cells expressing nucleases linked to fluorescent proteins can be used to maximize knockout or knock-in editing efficiencies or to balance editing efficiency and toxic/off-target effects. The two methods can be combined to form a pipeline for cell-line editing that facilitates the testing of new nuclease reagents and the generation of edited cell pools or clonal cell lines, reducing the number of clones that need to be generated and increasing the ease with which they are screened. The pipeline shortens the time line, but it most prominently reduces the workload of cell-line editing, which may be completed within 4 weeks.


Asunto(s)
Análisis Mutacional de ADN/métodos , Desoxirribonucleasas/metabolismo , Citometría de Flujo/métodos , Edición Génica/métodos , Genómica/métodos , Mutación INDEL , Animales , Células CHO , Cricetinae , Cricetulus , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes
11.
Dev Cell ; 39(3): 316-328, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27825440

RESUMEN

Positioning organs in the body often requires the movement of multiple tissues, yet the molecular and cellular mechanisms coordinating such movements are largely unknown. Here, we show that bidirectional signaling between EphrinB1 and EphB3b coordinates the movements of the hepatic endoderm and adjacent lateral plate mesoderm (LPM), resulting in asymmetric positioning of the zebrafish liver. EphrinB1 in hepatoblasts regulates directional migration and mediates interactions with the LPM, where EphB3b controls polarity and movement of the LPM. EphB3b in the LPM concomitantly repels hepatoblasts to move leftward into the liver bud. Cellular protrusions controlled by Eph/Ephrin signaling mediate hepatoblast motility and long-distance cell-cell contacts with the LPM beyond immediate tissue interfaces. Mechanistically, intracellular EphrinB1 domains mediate EphB3b-independent hepatoblast extension formation, while EpB3b interactions cause their destabilization. We propose that bidirectional short- and long-distance cell interactions between epithelial and mesenchyme-like tissues coordinate liver bud formation and laterality via cell repulsion.


Asunto(s)
Efrina-B1/metabolismo , Efrina-B3/metabolismo , Epitelio/embriología , Lateralidad Funcional , Hígado/embriología , Mesodermo/embriología , Morfogénesis , Receptores de la Familia Eph/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Tipificación del Cuerpo , Movimiento Celular , Forma de la Célula , Epitelio/metabolismo , Mesodermo/metabolismo , Seudópodos/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo
12.
Cell Rep ; 13(9): 1828-41, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26655899

RESUMEN

Lymphatic vessels arise chiefly from preexisting embryonic veins. Genetic regulators of lymphatic fate are known, but how dynamic cellular changes contribute during the acquisition of lymphatic identity is not understood. We report the visualization of zebrafish lymphatic precursor cell dynamics during fate restriction. In the cardinal vein, cellular commitment is linked with the division of bipotential Prox1-positive precursor cells, which occurs immediately prior to sprouting angiogenesis. Following precursor division, identities are established asymmetrically in daughter cells; one daughter cell becomes lymphatic and progressively upregulates Prox1, and the other downregulates Prox1 and remains in the vein. Vegfc drives cell division and Prox1 expression in lymphatic daughter cells, coupling signaling dynamics with daughter cell fate restriction and precursor division.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Vasos Linfáticos/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , División Celular , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas de Homeodominio/genética , Linfangiogénesis/fisiología , Vasos Linfáticos/citología , Microscopía Confocal , Neovascularización Fisiológica , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Factor C de Crecimiento Endotelial Vascular/genética , Pez Cebra/crecimiento & desarrollo
13.
Development ; 142(11): 1912-7, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26015535

RESUMEN

The endoderm gives rise to diverse tissues and organs that are essential for the homeostasis and metabolism of the organism: the thymus, thyroid, lungs, liver and pancreas, and the functionally diverse domains of the digestive tract. Classically, the endoderm, the 'innermost germ layer', was in the shadow of the ectoderm and mesoderm. However, at a recent Keystone meeting it took center stage, revealing astonishing progress in dissecting the mechanisms underlying the development and malfunction of the endodermal organs. In vitro cultures of stem and progenitor cells have become widespread, with remarkable success in differentiating three-dimensional organoids, which - in a new turn for the field - can be used as disease models.


Asunto(s)
Linaje de la Célula , Enfermedad , Desarrollo Embrionario , Endodermo/citología , Animales , Tipificación del Cuerpo , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Organoides/embriología
14.
Proc Natl Acad Sci U S A ; 111(8): 3062-7, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516132

RESUMEN

Minor class or U12-type splicing is a highly conserved process required to remove a minute fraction of introns from human pre-mRNAs. Defects in this splicing pathway have recently been linked to human disease, including a severe developmental disorder encompassing brain and skeletal abnormalities known as Taybi-Linder syndrome or microcephalic osteodysplastic primordial dwarfism 1, and a hereditary intestinal polyposis condition, Peutz-Jeghers syndrome. Although a key mechanism for regulating gene expression, the impact of impaired U12-type splicing on the transcriptome is unknown. Here, we describe a unique zebrafish mutant, caliban (clbn), with arrested development of the digestive organs caused by an ethylnitrosourea-induced recessive lethal point mutation in the rnpc3 [RNA-binding region (RNP1, RRM) containing 3] gene. rnpc3 encodes the zebrafish ortholog of human RNPC3, also known as the U11/U12 di-snRNP 65-kDa protein, a unique component of the U12-type spliceosome. The biochemical impact of the mutation in clbn is the formation of aberrant U11- and U12-containing small nuclear ribonucleoproteins that impair the efficiency of U12-type splicing. Using RNA sequencing and microarrays, we show that multiple genes involved in various steps of mRNA processing, including transcription, splicing, and nuclear export are disrupted in clbn, either through intron retention or differential gene expression. Thus, clbn provides a useful and specific model of aberrant U12-type splicing in vivo. Analysis of its transcriptome reveals efficient mRNA processing as a critical process for the growth and proliferation of cells during vertebrate development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Conformación Proteica , Empalme del ARN/fisiología , ARN Nuclear Pequeño/química , Proteínas de Unión al ARN/genética , Empalmosomas/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Intestinos/anomalías , Hígado/anomalías , Análisis por Micromatrices , Datos de Secuencia Molecular , Páncreas/anomalías , Mutación Puntual/genética , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Empalmosomas/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo
15.
Development ; 141(6): 1228-38, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24523456

RESUMEN

In mammals, the homeodomain transcription factor Prox1 acts as the central regulator of lymphatic cell fate. Its restricted expression in a subset of cardinal vein cells leads to a switch towards lymphatic specification and hence represents a prerequisite for the initiation of lymphangiogenesis. Murine Prox1-null embryos lack lymphatic structures, and sustained expression of Prox1 is indispensable for the maintenance of lymphatic cell fate even at adult stages, highlighting the unique importance of this gene for the lymphatic lineage. Whether this pre-eminent role of Prox1 within the lymphatic vasculature is conserved in other vertebrate classes has remained unresolved, mainly owing to the lack of availability of loss-of-function mutants. Here, we re-examine the role of Prox1a in zebrafish lymphangiogenesis. First, using a transgenic reporter line, we show that prox1a is initially expressed in different endothelial compartments, becoming restricted to lymphatic endothelial cells only at later stages. Second, using targeted mutagenesis, we show that Prox1a is dispensable for lymphatic specification and subsequent lymphangiogenesis in zebrafish. In line with this result, we found that the functionally related transcription factors Coup-TFII and Sox18 are also dispensable for lymphangiogenesis. Together, these findings suggest that lymphatic commitment in zebrafish and mice is controlled in fundamentally different ways.


Asunto(s)
Proteínas de Homeodominio/fisiología , Linfangiogénesis/fisiología , Proteínas Supresoras de Tumor/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Factor de Transcripción COUP II/deficiencia , Factor de Transcripción COUP II/genética , Factor de Transcripción COUP II/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Endoteliales/citología , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Linfangiogénesis/genética , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Ratones , Ratones Noqueados , Mutación , Factores de Transcripción SOXF/deficiencia , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Especificidad de la Especie , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
16.
Circ Res ; 114(1): 56-66, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24122719

RESUMEN

RATIONALE: The emergence of lymphatic endothelial cells (LECs) seems to be highly regulated during development. Although several factors that promote the differentiation of LECs in embryonic development have been identified, those that negatively regulate this process are largely unknown. OBJECTIVE: Our aim was to delineate the role of bone morphogenetic protein (BMP) 2 signaling in lymphatic development. METHODS AND RESULTS: BMP2 signaling negatively regulates the formation of LECs. Developing LECs lack any detectable BMP signaling activity in both zebrafish and mouse embryos, and excess BMP2 signaling in zebrafish embryos and mouse embryonic stem cell-derived embryoid bodies substantially decrease the emergence of LECs. Mechanistically, BMP2 signaling induces expression of miR-31 and miR-181a in a SMAD-dependent mechanism, which in turn results in attenuated expression of prospero homeobox protein 1 during development. CONCLUSIONS: Our data identify BMP2 as a key negative regulator for the emergence of the lymphatic lineage during vertebrate development.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Endotelio Linfático/embriología , Endotelio Linfático/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Animales , Proteína Morfogenética Ósea 2/genética , Diferenciación Celular , Línea Celular , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Vasos Linfáticos/embriología , Vasos Linfáticos/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Smad/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
17.
Development ; 140(9): 1912-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23515471

RESUMEN

Tightly controlled DNA replication and RNA transcription are essential for differentiation and tissue growth in multicellular organisms. Histone chaperones, including the FACT (facilitates chromatin transcription) complex, are central for these processes and act by mediating DNA access through nucleosome reorganisation. However, their roles in vertebrate organogenesis are poorly understood. Here, we report the identification of zebrafish mutants for the gene encoding Structure specific recognition protein 1a (Ssrp1a), which, together with Spt16, forms the FACT heterodimer. Focussing on the liver and eye, we show that zygotic Ssrp1a is essential for proliferation and differentiation during organogenesis. Specifically, gene expression indicative of progressive organ differentiation is disrupted and RNA transcription is globally reduced. Ssrp1a-deficient embryos exhibit DNA synthesis defects and prolonged S phase, uncovering a role distinct from that of Spt16, which promotes G1 phase progression. Gene deletion/replacement experiments in Drosophila show that Ssrp1b, Ssrp1a and N-terminal Ssrp1a, equivalent to the yeast homologue Pob3, can substitute Drosophila Ssrp function. These data suggest that (1) Ssrp1b does not compensate for Ssrp1a loss in the zebrafish embryo, probably owing to insufficient expression levels, and (2) despite fundamental structural differences, the mechanisms mediating DNA accessibility by FACT are conserved between yeast and metazoans. We propose that the essential functions of Ssrp1a in DNA replication and gene transcription, together with its dynamic spatiotemporal expression, ensure organ-specific differentiation and proportional growth, which are crucial for the forming embryo.


Asunto(s)
Ciclo Celular , Organogénesis , Transcripción Genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Proliferación Celular , Ensamble y Desensamble de Cromatina , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Ojo/citología , Ojo/embriología , Ojo/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Discos Imaginales/citología , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Hígado/citología , Hígado/embriología , Hígado/metabolismo , Masculino , Índice Mitótico , Mutación , ARN/biosíntesis , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
18.
PLoS Genet ; 9(2): e1003279, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23408911

RESUMEN

Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (tti(s450)), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In tti(s450), the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in tti(s450) larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in tti(s450) larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death.


Asunto(s)
Autofagia/genética , Proteínas de Ciclo Celular , Ribosomas , Serina-Treonina Quinasas TOR , Proteína p53 Supresora de Tumor , Proteínas de Pez Cebra , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular , Genes Letales/genética , Mutación , Biosíntesis de Proteínas/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Dev Biol ; 363(1): 128-37, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22222761

RESUMEN

Biliary epithelial cells line the intrahepatic biliary network, a complex three-dimensional network of conduits. The loss of differentiated biliary epithelial cells is the primary cause of many congenital liver diseases. We identified a zebrafish snapc4 (small nuclear RNA-activating complex polypeptide 4) mutant in which biliary epithelial cells initially differentiate but subsequently disappear. In these snapc4 mutant larvae, biliary epithelial cells undergo apoptosis, leading to degeneration of the intrahepatic biliary network. Consequently, in snapc4 mutant larvae, biliary transport of ingested fluorescent lipids to the gallbladder is blocked. Snapc4 is the largest subunit of a protein complex that regulates small nuclear RNA (snRNA) transcription. The snapc4(s445) mutation causes a truncation of the C-terminus, thereby deleting the domain responsible for a specific interaction with Snapc2, a vertebrate specific subunit of the SNAP complex. This mutation leads to a hypomorphic phenotype, as only a subset of snRNA transcripts are quantitatively altered in snapc4(s445) mutant larvae. snapc2 knockdown also disrupts the intrahepatic biliary network in a similar fashion as in snapc4(s445) mutant larvae. These data indicate that the physical interaction between Snapc2 and Snapc4 is important for the expression of a subset of snRNAs and biliary epithelial cell survival in zebrafish.


Asunto(s)
Hígado/metabolismo , Mutación , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Sitios de Unión/genética , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Hígado/citología , Hígado/crecimiento & desarrollo , Masculino , Microscopía Confocal , Microscopía Electrónica , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Factores de Transcripción/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
20.
Methods Cell Biol ; 104: 401-28, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21924175

RESUMEN

The generation of complex organisms requires that an initial population of cells with identical gene expression profiles can adopt different cell fates during development by progressively diverging transcriptional programs. These programs depend on the binding of transcritional regulators to specific genomic sites, which in turn is controlled by modifications of the chromatin. Chromatin modifications may occur directly upon DNA by methylation of specific nucleotides, or may involve post-translational modification of histones. Local regulation of histone post-translational modifications regionalizes the genome into euchromatic regions, which are more accessible to DNA-binding factors, and condensed heterochromatic regions, inhibiting the binding of such factors. In addition, these modifications may be required in a genome-wide fashion for processes such as DNA replication or chromosome condensation. From an embryologist's point of view chromatin modifications are intensively studied in the context of imprinting and have more recently received increasing attention in understanding the basis of pluripotency and cellular differentiation. Here, we describe recently uncovered roles of chromatin modifications in zebrafish development and regeneration, as well as available resources and commonly used techniques. We provide a general introduction into chromatin modifications and their respective functions with a focus on gene transcription, as well as key aspects of their roles in the early zebrafish embryo, neural development, formation of the digestive system and tissue regeneration.


Asunto(s)
Ensamble y Desensamble de Cromatina , Regulación del Desarrollo de la Expresión Génica , Pez Cebra/crecimiento & desarrollo , Acetilación , Animales , Tipificación del Cuerpo/genética , Inmunoprecipitación de Cromatina , Metilación de ADN , Sistema Digestivo/crecimiento & desarrollo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Histona Acetiltransferasas/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Mutación , Sistema Nervioso/crecimiento & desarrollo , Regeneración/genética , Análisis de Secuencia de ADN/métodos , Transcripción Genética , Pez Cebra/genética , Pez Cebra/metabolismo , Cigoto/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...