Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
PLoS One ; 15(4): e0231344, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32324770

RESUMEN

BACKGROUND: Cross-reactive carbohydrate determinant (CCD) structures found in plant and insect glycoproteins are commonly recognized by IgE antibodies as epitopes that can lead to extensive cross-reactivity and obscure in vitro diagnostic (IVD) serology results. With the introduction of component resolved diagnosis (CRD), recombinant non-glycosylated components have been utilized to mitigate the risk of CCD-specific IgE (sIgE) detection. However, a recent study has shown that CCD-sIgE may bind directly to the cellulose solid phase matrix used in certain in vitro diagnostic assays, eliminating the advantage of CRD over traditional extract-based testing. The aim of this study is to further investigate the prevalence of CCD-sIgE interference on a commonly-used in vitro sIgE automated platform which employs a cellulose-based matrix to immobilize CCD-free recombinant components. METHODS: Sera from patients sensitized to peanut, silver birch, and/or timothy grass were analyzed for CCD-sIgE reactivity on ImmunoCAP/Phadia and NOVEOS autoanalyzers against the MUXF3 carbohydrate component. Positive CCD-sIgE sera were further analyzed against non-glycosylated recombinant components bound to the ImmunoCAP solid phase in the absence and presence of a soluble CCD inhibitor. For comparison, sera were then analyzed on NOVEOS, a non-cellulose based automated sIgE assay. RESULTS: Sera from 35% of the sensitized population tested in this study were positive (≥0.35 kU/L) for CCD-sIgE. Of those positives, 17% resulted in CCD-sIgE-positive (false positive) results on ImmunoCAP using non-glycosylated allergosorbents that were negative on NOVEOS. Sera producing false-positive results on ImmunoCAP had varying levels of CCD-sIgE from 0.67 kU/L to 36.52 kU/L. The incidence of CCD interference was predominantly delimited to low-positive IgE results (0.35 kUA/L- 3.00 kUA/L). CONCLUSION: Falsely elevated diagnostic allergen-sIgE results can commonly occur due to the presence of CCD-sIgE using assays that employ a carbohydrate matrix-based allergosorbent. Even the use of non-glycosylated recombinant allergenic components coupled to cellulose matrices do not reduce their risk of detection. The risk of CCD interference that compromises quantitative IgE results can be mitigated by the addition of a soluble CCD inhibitor to positive CCD-sIgE containing sera or by alternatively using a non-cellulose based sIgE assay, such as the NOVEOS assay.


Asunto(s)
Alérgenos/inmunología , Celulosa/inmunología , Inmunoglobulina E/inmunología , Alérgenos/genética , Alérgenos/metabolismo , Arachis/inmunología , Betula/inmunología , Reacciones Cruzadas , Humanos , Hipersensibilidad/sangre , Hipersensibilidad/patología , Inmunoglobulina E/sangre , Phleum/inmunología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología
3.
Nat Commun ; 8(1): 219, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28794470

RESUMEN

Persistent exposure to man-made endocrine disrupting chemicals during fetal endocrine development may lead to disruption of metabolic homeostasis contributing to childhood obesity. Limited cellular platforms exist to test endocrine disrupting chemical-induced developmental abnormalities in human endocrine tissues. Here we use an human-induced pluripotent stem cell-based platform to demonstrate adverse impacts of obesogenic endocrine disrupting chemicals in the developing endocrine system. We delineate the effects upon physiological low-dose exposure to ubiquitous endocrine disrupting chemicals including, perfluoro-octanoic acid, tributyltin, and butylhydroxytoluene, in endocrine-active human-induced pluripotent stem cell-derived foregut epithelial cells and hypothalamic neurons. Endocrine disrupting chemicals induce endoplasmic reticulum stress, perturb NF-κB, and p53 signaling, and diminish mitochondrial respiratory gene expression, spare respiratory capacity, and ATP levels. As a result, normal production and secretion of appetite control hormones, PYY, α-MSH, and CART, are hampered. Blocking NF-κB rescues endocrine disrupting chemical-induced aberrant mitochondrial phenotypes and endocrine dysregulation, but not ER-stress and p53-phosphorylation changes.Harmful chemicals that disrupt the endocrine system and hormone regulation have been associated with obesity. Here the authors apply a human pluripotent stem cell-based platform to study the effects of such compounds on developing gut endocrine and neuroendocrine systems.


Asunto(s)
Disruptores Endocrinos/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , FN-kappa B/metabolismo , Estrés Fisiológico/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Adenosina Trifosfato/metabolismo , Hormonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas , Mucosa Intestinal/efectos de los fármacos , Mitocondrias/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...