Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2402905, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695744

RESUMEN

Ultrapure deep-blue emitters are in high demand for organic light-emitting diodes (OLEDs). Although color coordinates serve as straightforward parameters for assessing color purity, precise control over the maximum wavelength and full-width at half-maximum is necessary to optimize OLED performance, including luminance efficiency and luminous efficacy. Multiple-resonance (MR) emitters are promising candidates for achieving ideal luminescence properties; consequently, a wide variety of MR frameworks have been developed. However, most of these emitters experience a wavelength displacement from the ideal color, which limits their practical applicability. Therefore, a molecular design that is compatible with MR emitters for modulating their energy levels and color output is particularly valuable. Here, it is demonstrated that the azepine donor unit induces an appropriate blue-shift in the emission maximum while maintaining efficient MR characteristics, including high photoluminescence quantum yield, narrow emission, and a fast reverse intersystem crossing rate. OLEDs using newly developed MR emitters based on the ν-DABNA framework simultaneously exhibit a high quantum efficiency of ≈30%, luminous efficacy of ≈20 lm W-1, exceptional color purity with Commission Internationale de l'Éclairage coordinates as low as (0.14, 0.06), and notably high operational stability. These results demonstrate unprecedentedly high levels compared with those observed in previously reported deep-blue emitters.

2.
Nat Commun ; 15(1): 2361, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565868

RESUMEN

An ultrapure deep-blue multi-resonance-induced thermally activated delayed fluorescence material (DOB2-DABNA-A) is designed and synthesized. Benefiting from a fully resonating extended helical π-conjugated system, this compound has a small ΔEST value of 3.6 meV and sufficient spin-orbit coupling to exhibit a high-rate constant for reverse intersystem crossing (kRISC = 1.1 × 106 s-1). Furthermore, an organic light-emitting diode employing DOB2-DABNA-A as an emitter is fabricated; it exhibits ultrapure deep-blue emission at 452 nm with a small full width at half maximum of 24 nm, corresponding to Commission Internationale de l'Éclairage (CIE) coordinates of (0.145, 0.049). The high kRISC value reduces the efficiency roll-off, resulting in a high external quantum efficiency (EQE) of 21.6% at 1000 cd m-2.

3.
Chem Soc Rev ; 53(3): 1624-1692, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38168795

RESUMEN

Boron-based multiple-resonance (MR) emitters exhibit the advantages of narrowband emission, high absolute photoluminescence quantum yield, thermally activated delayed fluorescence (TADF), and sufficient stability during the operation of organic light-emitting diodes (OLEDs). Thus, such MR emitters have been widely applied as blue emitters in triplet-triplet-annihilation-driven fluorescent devices used in smartphones and televisions. Moreover, they hold great promise as TADF or terminal emitters in TADF-assisted fluorescence or phosphor-sensitised fluorescent OLEDs. Herein we comprehensively review organoboron-based MR emitters based on their synthetic strategies, clarify structure-photophysical property correlations, and provide design guidelines and future development prospects.

4.
Phys Chem Chem Phys ; 25(16): 11839-11844, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37067862

RESUMEN

We synthesized two types of the regioisomers fused by a phenylnaphthalene ring with variable connection points to the o-carborane scaffold. In this paper, we describe their photoluminescence (PL) properties and detailed photochemical mechanisms. According to the series of optical measurements, interestingly, they showed different PL characters in terms of wavelength and the dual-emission character despite that they have the common aromatic unit. Variable-temperature PL measurements and quantum chemical calculations suggested that the substitution position of aryl groups to o-carborane plays an important role in determining the energy barrier to the intramolecular charge-transfer (ICT) state at the S1 state. Finally, it is revealed that the relative position of the C-C bond of o-carborane and the aryl center should be responsible for the photophysical events of aryl-o-carboranes.

5.
Angew Chem Int Ed Engl ; 62(2): e202214397, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36328979

RESUMEN

Herein, we report the unique solid-state excimer emission of three types of acridine-tethered o-carboranes with variable degrees of methylation at the o-carborane unit. They all showed columnar packing structures based on dimer formation, and two types of π-overlapping motifs were alternately stacked. From the photoluminescence (PL) measurements on the crystalline samples, it was found that three types of luminescence bands can simultaneously appear: monomer emission, excimer emission from the moderately π-stacked intra-dimer unit, and excimer emission from the widely π-stacked inter-dimer unit. Consequently, the PL colors were drastically changed by the steric effect of the methyl groups, with a strong correlation found between the π-overlapping and excimer character. In addition, variable-temperature PL measurements revealed that these PL species should be in thermal equilibrium at room temperature, with the intensity ratios sensitive toward temperature changes.

6.
Chemistry ; 28(20): e202200758, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35319118

RESUMEN

Invited for the cover of this issue is the group of Kazuo Tanaka at Kyoto University. The image depicts the control of solid-state dual-emissive properties by modulating the intramolecular hydrogen bonding in boron clusters. Read the full text of the article at 10.1002/chem.202200155.

7.
Chemistry ; 28(20): e202200155, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35170101

RESUMEN

It is still challenging to realize a dual-emission system, in which two luminescent bands simultaneously appear by photoexcitation, in solid with organic dyes due to the difficulty in regulation of electronic properties in the excited state and concentration quenching. o-Carborane is known to be a versatile platform for constructing solid-state emitters since the sphere boron cluster is favorable for suppressing intermolecular interactions and subsequently concentration quenching. Here, we show solid-state dual-emissive o-carborane derivatives. We prepared 4 types of o-carborane derivatives and found dual-emission behaviors both in solution and solid states. By regulating the rotation at the o-carborane unit with the intramolecular Ccage H⋅⋅⋅O interaction, the dual-emission intensity ratios were changed. Finally, it was demonstrated that the overall photoluminescence spectra can be estimated using the binding energy of intramolecular interactions.

8.
Inorg Chem ; 60(12): 8990-8997, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34110800

RESUMEN

Although excimer emission is a useful luminescent phenomenon for fabricating optical sensors and probes, it is difficult to apply excimer emission for film sensors due to critical concentration quenching in the solid state. Therefore, robust molecular designs for solid-state excimer emission are still being explored. One of the key examples is the previously reported acridine-ethynyl-o-carborane AcE1, which showed a bright solid-state excimer emission assisted by characteristic CcageH···N interactions. In this paper, we report the newly synthesized acridine-diehynyl-o-carborane AcE2 and comprehensively compare it to AcE1. Both compounds had the same crystalline packing mode based on dimer formation, resulting in an efficient π-overlapping area and solid-state excimer emission. Variable-temperature photoluminescence (VT-PL) measurements revealed the consecutive thermochromic luminescence of these compounds. Finally, on the basis of the easily accessible spray-coating method, we constructed the thermochromic luminescent sensors on quartz substrates. According to the mechanistic studies, it is demonstrated that the design strategy based on a dimer-induced solid-state excimer should have great potential for applications as a molecular thermometer.

9.
Dalton Trans ; 50(3): 1025-1033, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33367426

RESUMEN

Because of their unique luminescence properties, such as aggregation-induced emission (AIE), intense solid-state luminescence and stimuli-responsive luminochromism, aryl-substituted o-carboranes have attracted attention as a platform for developing functional optoelectronic materials. However, there still remains one fundamental issue with the detailed mechanism of solution quenching in AIE behaviors. Aryl-modified o-carboranes with AIE properties exhibit intense emission not in solution but in the solid state. According to quantum calculations and many experimental results, the elongation at the carbon-carbon bond in o-carborane in the excited state, followed by nonradiative decay, has been proposed as a main path for emission annihilation in solution. However, intramolecular rotation would simultaneously occur, and there is a possibility that emission annihilation could be induced by the combination of both bond elongation and rotation. In this study, we designed two types of biphenyl-substituted o-carboranes having fused structures at the neighbor carbon and boron atoms for fixing molecular conformation. In these molecules, bond elongation is allowed, while rotation would be prohibited. From the series of optical measurements and theoretical investigations, we proved that emission annihilation can occur through bond elongation in the absence of rotation. Moreover, we show that bond elongation could be suppressed by introducing a bulky substituent at the adjacent carbon, and emission color tuning was achieved. This is the first example, to the best of our knowledge, to prove that excitation decay can proceed only through bond elongation without electronic perturbation caused by rotation.

10.
Angew Chem Int Ed Engl ; 59(25): 9841-9855, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32009291

RESUMEN

o-Carborane, a cluster compound containing boron and adjacent carbon atoms, displays intriguing luminescent properties. Recently, compounds containing o-carborane units were found to show suppressed aggregation-induced quenching and intense solid-state emission; they also show potential for the development of stimuli-responsive luminochromic materials. In this Minireview, we introduce three kinds of fundamental photochemical properties: aggregation-induced emission, twisted intramolecular charge transfer in crystals, and environment-sensitive excimer formation in solids. Based on these properties, several types of luminochromism, such as thermos-, vapo-, and mechanochromism, have been discovered. Based mainly on results from recent studies, we illustrate these mechanisms as well as unique luminescent behaviors of o-carborane derivatives.

11.
Chem Asian J ; 14(9): 1577-1581, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-30895734

RESUMEN

The time-dependent emission enhancement (TDEE) phenomena of the 1-(o-carboran-1-yl)ethynylpyrene dyad were reported. It was found that the emission intensity from the dyad increased in tetrahydrofuran (THF), acetone and dichloromethane with increasing incubation time. From the mechanistic studies, it was suggested that agglomeration of the dyad gradually proceeded in these media, followed by expression of excimer luminescence. Additionally, it was shown that the rates of TDEE of the dyad were sensitively accelerated in the presence of a trace amount of water. Based on this fact, a detection system for water contents in acetone was constructed. Before and after incubation for 96 h at room temperature, time courses of changes in optical properties were monitored. Finally, water contents in acetone can be estimated by the degrees of TDEE and emission color changes in the range from 0.1 wt % to 2.0 wt % and from 2.0 wt % to 20 wt %, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...