Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903208

RESUMEN

The various concepts involved in the mathematical modeling of the fluid-solid interactions (FSIs) of catalytic combustion processes occurring within a porous burner are presented and discussed in this paper. The following aspects of them are addressed: (a) the relevant physical and chemical phenomena appearing at the interface between the gas and the catalytic surface; (b) a comparison of mathematical models; (c) a proposal of a hybrid two/three-field model, (d) an estimation of the interphase transfer coefficients; (e) a discussion of the proper constitutive equations and the closure relations; and (f) a generalization of the Terzaghi concept of stresses. Selected examples of application of the models are then presented and described. Finally, a numerical verification example is presented and discussed to demonstrate the application of the proposed model.

2.
Materials (Basel) ; 14(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34885463

RESUMEN

The cooling technology of hot turbine components has been a subject of continuous improvement for decades. In high-pressure turbine blades, the regions most affected by the excessive corrosion are the leading and trailing edges. In addition, high Kt regions at the hot gas path are exposed to cracking due to the low and high cycle fatigue failure modes. Especially in the case of a nozzle guide vane, the ability to predict thermally driven loads is crucial to assess its life and robustness. The difficulties in measuring thermal properties in hot conditions considerably limit the number of experimental results available in the literature. One of the most popular test cases is a NASA C3X vane, but coolant temperature is not explicitly revealed in the test report. As a result of that, numerous scientific works validated against that vane are potentially inconsistent. To address that ambiguity, the presented work was performed on a fully structural and a very fine mesh assuming room inlet temperature on every cooling channel. Special attention was paid to the options of the k-ω SST (shear-stress transport) viscosity model, such as Viscous heating (VH), Curvature correction (CC), Production Kato-Launder (KT), and Production limiter (PL). The strongest impact was from the Viscous heating, as it increases local vane temperature by as much as 40 deg. The significance of turbulent Prandtl number impact was also investigated. The default option used in the commercial CFD code is set to 0.85. Presented study modifies that value using equations proposed by Wassel/Catton and Kays/Crawford. Additionally, the comparison between four, two, and one-equation viscosity models was performed.

3.
Materials (Basel) ; 14(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34885603

RESUMEN

This paper presents an improvement in the Huber-Mises-Hencky (HMH) material effort hypothesis proposed by Burzynski. Unlike the HMH hypothesis, it differentiates the plastic effort between compression and tensile load states, and links shear with tensile limit. Furthermore, it considers the fact that construction materials do not have infinite resistance in the pure tensile hydrostatic load state, which was proved by the static load experiment performed on St12T heat-resistant steel. The asymmetry between tensile and compressive loads is captured by the elastic region asymmetry coefficient Ï°, which was established by experiment for St12T steel in the temperature range between 20 °C and 800 °C.

4.
Micromachines (Basel) ; 12(6)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204189

RESUMEN

The paper deals with the medical application of diode-lasers. A short review of medical therapies is presented, taking into account the wavelength applied, continuous wave (cw) or pulsed regimes, and their therapeutic effects. Special attention was paid to the laryngological application of a pulsed diode laser with wavelength 810 nm, and dermatologic applications of a 975 nm laser working at cw and pulsed mode. The efficacy of the laser procedures and a comparison of the pulsed and cw regimes is presented and discussed.

5.
Materials (Basel) ; 13(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096830

RESUMEN

The modern wood converting processes consists of several stages and material drying belongs to the most influencing future performances of products. The procedure of drying wood is usually realized between subsequent sawing operations, affecting significantly cutting conditions and general properties of material. An alternative methodology for determination of mechanical properties (fracture toughness and shear yield stress) based on cutting process analysis is presented here. Two wood species (pine and beech) representing soft and hard woods were investigated with respect to four diverse drying methods used in industry. Fracture toughness and shear yield stress were determined directly from the cutting power signal that was recorded while frame sawing. An original procedure for compensation of the wood density variation is proposed to generalize mechanical properties of wood and allow direct comparison between species and drying methods. Noticeable differences of fracture toughness and shear yield stress values were found among all drying techniques and for both species, but only for beech wood the differences were statistically significant. These observations provide a new highlight on the understanding of the effect of thermo-hydro modification of wood on mechanical performance of structures. It can be also highly useful to optimize woodworking machines by properly adjusting cutting power requirements.

6.
Materials (Basel) ; 13(20)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050274

RESUMEN

The article analyzes the cutting process of hard bars. Investigations conducted in industrial conditions demonstrated the presence of surface errors in the machined workpieces in the form of washboard patterns. The purpose of this study was to analyze the results of cutting on band sawing machines with different band saw blades. The cutting processes were conducted on three different horizontal band sawing machine types. Analyzed material was an alloy steel Ø40 mm rod with a hardened surface covered with a thin layer of chromium. The hardness of the outer layer was 547 HV with a core hardness of 180 HV. The surface topography measurements of the processed workpieces were carried out with the 3D Optical Profiler, which supplied information on the irregularities of the processed material texture. In each of the analyzed cases, a corrugated surface was obtained after sawing, which is the effect of the occurrence of the washboarding phenomenon, despite the fact that the teeth of each band saw had variable pitches. The washboarding phenomenon when cutting rods with hard surfaces is caused by the phenomenon of wave regeneration. Despite the use of variable pitch saw blades, the cutting process results in rippling of the sawn surface, which is caused by the high hardness of the outer layer of the workpiece, as well as by the type of tool with spring setting of teeth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...