Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(35): 16593-16601, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39162576

RESUMEN

A supramolecular approach based on self-assembled structures allows the formation of large structured co-assemblies based on chiral and achiral compounds with original physicochemical features. In this contribution, an achiral and hydrophobic porphyrin was co-assembled at the air-water interface with mesoscopic silica nano-helices dispersed in the water subphase of a Langmuir trough without covalent bond formation. This procedure allowed transferring the porphyrin/nano-helix co-assemblies on a solid support within a thin hybrid layer. The interaction between the two species was characterized using spectroscopic techniques and atomic force microscopy. As evidenced by the circular dichroism measurements performed directly on solid films, tunable chirality was induced to the porphyrin aggregates according to the chirality of the silica nano-helices. When the co-assemblies were transferred on surface plasmon resonance (SPR) slides and exposed to aqueous solutions of histidine enantiomers, selective chiral discrimination was observed which was determined by the matching/mismatching between the chirality of the analyte and the helicity of the nano-helical structure.

2.
Nanoscale Adv ; 6(17): 4470-4478, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39170970

RESUMEN

The ability of olfaction to distinguish odors is based on many different properties deriving from the molecular structure, including chirality. Even if the electronic nose (e-nose) concept has been widely used in strict analogy with biological systems to implement sensor arrays that recognize and distinguish complex odor matrices, the fabrication of an enantioselective e-nose remains a challenge. This paper introduces an array of quartz microbalances (QMB) functionalized with sensitive materials made of a combination of achiral receptors and silica nanohelices grafted by chiral and achiral porphyrins. In this combination, nanohelices provide a chiral template for the spatial arrangement of porphyrins, while porphyrins act as receptors that can interact differently with analytes. Remarkably, even if single sensors show scarce enantioselectivity, the signals of the overall array achieve recognition of the chiral identity of the five diverse enantiomeric pairs tested when the data are processed with proper multivariate algorithms. Such an innovative and generalizable approach is expected to enable the formation of an extensive library of readily integrable chiral receptors in enantioselective sensor arrays, potentially revolutionizing diverse fields such as agrochemicals, medicine, and environmental sciences.

3.
Chem Commun (Camb) ; 60(59): 7634-7637, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38958669

RESUMEN

A microsphere, assembled from a chiral π-conjugated polymer with narrow polydispersity, features a well-organized twisted-bipolar structure and exhibits highly biased circularly polarized luminescence (CPL). The CPL emitted toward the equatorial direction is 61-fold greater than that emitted along the zenith direction, which is the highest anisotropy among existing microscopic CPL emitters.

4.
Chem Commun (Camb) ; 60(13): 1743-1746, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38240695

RESUMEN

Chemoresponsive microgels functionalized with enantiomeric Δ- or Λ-[Ru(bpy)3]2+ showed tunable chiroptical properties upon swelling and shrinking. The tuning is triggered by a modulation of the local mobility of [Ru(bpy)3]2+ upon addition of fructose, controlling interactions and distances between [Ru(bpy)3]2+ and phenylboronic acid.

5.
J Phys Chem B ; 128(6): 1550-1556, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295761

RESUMEN

The development of chiral receptors for discriminating the configuration of the analyte of interest is increasingly urgent in view of monitoring pollution in water and waste liquids. Here, we investigate an easy protocol to immobilize the desired non-water-soluble receptors inside a water-dispersible chiral nanoplatform made of silica. This approach induces chirality in the receptors and Here, we investigate an easy protocol to immobilize the desired non-water-soluble receptors inside a water-dispersible chiral nanoplatform made of silica. This approach induces chirality in the receptors and makes the dye@nanohelix system disperse in a suspension of water without aggregation. We noted strong induction and amplification of chiroptical activity in both achiral and chiral (proline-based or hemicucurbituril-based) porphyrin derivatives with and without zinc ions once confined and organized in nanometer silica helices. The results clearly demonstrated that the organization-induced chirality amplification of porphyrins dominates the molecular chirality, and the amplification is more efficient for more flexible porphyrins (especially free-base and achiral).

7.
Chem Commun (Camb) ; 59(80): 11979-11982, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37724566

RESUMEN

Controlled aggregation of dyes is crucial to achieve their desired optical and electronic properties. Here, we report the induction of chiral J-aggregation of carbocyanine dyes by using lysine-derived amphiphile assemblies as scaffolds in water. The molecular structure of the amphiphiles affected the packing of the assembly. The tight packing with some flexibility promoted the formation of J-aggregates of the dyes with strong chiroptical properties.

8.
ACS Appl Mater Interfaces ; 15(33): 39480-39493, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37556291

RESUMEN

Flexible strain sensors based on nanoparticle (NP) arrays show great potential for future applications such as electronic skin, flexible touchscreens, healthcare sensors, and robotics. However, even though these sensors can exhibit high sensitivity, they are usually not very stable under mechanical cycling and often exhibit large hysteresis, making them unsuitable for practical applications. In this work, strain sensors based on silica nanohelix (NH) arrays grafted with gold nanoparticles (AuNPs) can overcome these critical aspects. These 10 nm AuNPs are functionalized with mercaptopropionic acid (MPA) and different ratios of thiol-polyethylene glycol-carboxylic acid (HS-PEG7-COOH) to optimize the colloidal stability of the resulting NH@AuNPs nanocomposite suspensions, control their aggregation state, and tune the thickness of the insulating layer. They are then grafted covalently onto the surface of the NHs by chemical coupling. These nanomaterials exhibit a well-defined arrangement of AuNPs, which follows the helicity of the silica template. The modified NHs are then aligned by dielectrophoresis (DEP) between interdigitated electrodes on a flexible substrate. The flexibility, stability, and especially sensitivity of these sensors are then characterized by electromechanical measurements and scanning electron microscopy observations. These strain sensors based on NH@AuNPs nanocomposites are much more stable than those containing only nanoparticles and exhibit significantly reduced hysteresis and high sensitivity at very slight strains. They can retain their sensitivity even after 2 million consecutive cycles with virtually unchanged responsiveness. These improved performances come from their mechanical stability and the use of nanohelices as stable mechanical templates.

9.
Nanoscale ; 15(28): 12095-12104, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37424328

RESUMEN

Because the combination of chiral and magnetic properties is becoming more and more attractive for magneto-chiral phenomena, we here aim at exploring the induction of chirality to achiral magnetic molecules as a strategy for the preparation of magneto-chiral objects. To this end, we have associated free base- and metallo-porphyrins with silica nano helices, using a variety of elaboration methods, and have studied them mainly by electronic natural circular dichroism (NCD) and magnetic circular dichroism (MCD) spectroscopies. While electrostatic or covalent surface grafting uniformly yielded very low induced CD (ICD) for the four assayed porphyrins, a moderate response was observed when the porphyrins were incorporated into the interior of the double-walled helices, likely due to the association of the molecules with the chirally-organized gemini surfactant. A generally stronger, but more variable, ICD was observed when the molecules were drop casted onto the helices immobilised on a quartz plate, likely due to the different capacities of the porphyrins to aggregate into chiral assemblies. Electronic spectroscopy, electron microscopy and IR spectroscopy were used to interpret the patterns of aggregation and their influence on ICD and MCD. No enhancement of MCD was observed as a result of association with the nanohelices except in the case of the free base, 5,10,15,20-tetra-(4-sulfonatophenyl)porphyrin (TPPS). This nanocomposite demonstrated a large ICD in the Soret region and a large MCD in the Q-region due to J-aggregation. However, no induced MChD was observed, possibly due to the spectral mismatch between the ICD and MCD peaks.

10.
Chem Commun (Camb) ; 59(64): 9762-9765, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37483164

RESUMEN

Self-organised helical bilayers of dicationic gemini surfactants confined in helical silica nanospace were transformed in situ to carbon dots (CDots) via pyrolysis. These water-dispersible CDots exhibit electronic absorption spanning the UV and visible range and possess symmetrical circular dichroism (CD) signals, the sign of which depends on the handedness of the helices.

11.
Chem Commun (Camb) ; 59(51): 7963-7966, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37282831

RESUMEN

Trans-1,2-di(1-pyrenylamino)cycloxexane was found to display circularly polarized excimer emission (glum = 0.016) both in polar and non-polar solvents that is assigned to charge separation symmetry breaking on the basis of its large transition state dipole moment (12.1 D).


Asunto(s)
Luminiscencia , Solventes
12.
Nano Lett ; 23(8): 3174-3180, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37052340

RESUMEN

Helical perovskite nanocrystals (H-PNCs) were prepared using nanometric silica helical ribbons as platforms for the in situ growth of the crystals using the supersaturated recrystallization method. The H-PNCs grow inside nanometric helical porous silica, and their handedness is determined by the handedness of porous silica templates. They show both strong induced circular dichroism (CD) and strong induced circularly polarized luminescence (CPL) signals, with high dissymmetry g-factors. Right-handed and left-handed PNCs show respectively positive and negative CD and CPL signals, with a dissymmetry g-factor (abs and lum) of ∼±2 × 10-2. Simulations based on the boundary element method demonstrate that the circular dichroism originates from the chiral shape of H-PNCs.

13.
Langmuir ; 39(12): 4216-4223, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36926905

RESUMEN

The process of convectively self-assembling particles in films suffers from low reproducibility due to its high dependency on particle concentration, as well as a variety of interactions and physical parameters. Inhomogeneities in flow rates and instabilities at the air-liquid interface are mostly responsible for reproducibility issues. These problems are aggravated by adding multiple components to the dispersion, such as binary solvent mixtures or surfactant/polymer additives, both common approaches to control stick-slip behavior. When an additive is used, not only does it change the surface tension, but also the viscosity and the evaporation rate. Worse yet, gradients in these three properties can form, which then lead to Marangoni currents. Here, we use a series of alcohols to study the role of viscosity independently of other solvent properties, to show its impact on stick-slip behavior and interband distances. We show that mixtures of glycerol and alcohol or poly(acrylic acid) and alcohol lead to more complex patterning. Marangoni currents are not always observed in co-solvent systems, being dependent on the rate of solvent evaporation. To produce homogeneous particle assemblies and control stick-slip behavior, gradients must be avoided, and the surface tension and viscosity need both be carefully controlled.

14.
Chirality ; 35(7): 411-417, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36943171

RESUMEN

Fluorescent materials with large Stokes shifts have significant potential for use in optical applications. Typically, a synthetic design strategy is utilized for this purpose. In this study, we demonstrated a novel method by binding a chiral template to a nonchiral fluorescent agent without chemical modification. Specifically, α-helical poly(L-lysine) was employed as the chiral template, which interacted with a disulfonic fluorescent dye, such as NK2751. The dye caused excimer luminescence by inducing the formation of a chirally H-aggregated dimer only when poly(L-lysine) was in an α-helical shape. The result was a Stokes shift of 230 nm. Similar effects were not observed when the chiral template was in a random coil condition and the Stokes shift was less than 40 nm. These findings imply that H-aggregated dimerization, which often results in quenching, permits the electronic transitions necessary for fluorescence events by the formation of the chirally twisted state. In addition, we introduce for the first time the generation of circularly polarized luminescence using the chirality induction phenomena in a dye supported by poly(L-lysine).

15.
Nano Lett ; 23(2): 462-468, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36638061

RESUMEN

Spatiotemporal pattern formation is dynamic self-organization widely observed in nature and drives various functions. Among these functions, chirality plays a central role. The relationship between dynamic self-organization and chirality has been an open question; therefore, the production of chiral nanomaterials by dynamic self-organization has not been achieved. Here, we show that the confinement of a two-dimensional spatiotemporal micropattern via the electrodeposition of a binary Cu alloy into a nanopore induces mirror symmetry breaking to produce a helical nanostructure of the noble-metal component although it is still not yet possible to control the handedness at this stage. This result suggests that spatiotemporal symmetry breaking functions as a mirror symmetry breaking if cylindrical pores are given as the boundary condition. This study can be a model system of how spatiotemporal symmetry breaking plays a role in mirror symmetry breaking, and it proposes a new approach to producing helical nanomaterials through dynamic self-organization.

16.
Chemphyschem ; 24(3): e202200573, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36333110

RESUMEN

The synthesis and characterization of diketopyrrolopyrroles and perylenemonoimidodiesters linked to a substituted benzoic acid in the ortho, meta, and para positions, are reported. Grafting of these dyes on the surface of chiral silica nanohelices is used to probe how the morphology of the platform at the mesoscopic level affects the induction of chiroptical properties onto achiral molecular chromophores. The grafted structures are weakly (diketopyrrolopyrroles) or strongly (perylenemonoimidodiesters) emissive, exhibiting both locally-excited state emission and a broad, structureless emission assigned to excimers. The dissymmetry factors obtained using circular dichroism highlight optimized supramolecular organization between the chromophores for enhancing the chiroptical properties of the system. In the ortho- derivatives, poor organization due to steric hindrance is reflected in a low density of chromophores on walls of the silica-nanostructures (<0.1 vs. >0.3 and up to 0.6 molecules/nm2 for the ortho and meta or para derivatives, respectively) and lower gabs values than in the other derivatives (gabs <2×10-5 vs 6×10-5 for the ortho and para derivatives, respectively). The para derivatives presented a better organization and increased values of gabs . All grafted chromophores evidence varying degrees of excimer emission which was not found to directly correlate to their grafting density.

17.
Chem Commun (Camb) ; 58(97): 13515-13518, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36385323

RESUMEN

Hybrid nanometric helical structures formed by the molecular assemblies of dicationic gemini surfactants with tartrate counterions covered with helical silica walls interact differently with matching or mismatching enantiomers of the tartrate. The difference of the interaction is based on the cooperativity between the chiral crystalline gemini surfactant molecular organization/conformation and the rigid chiral nanospace formed by the helical silica wall.

19.
J Am Chem Soc ; 144(4): 1663-1671, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35073069

RESUMEN

Mastering the manipulation of chirality at the nanoscale has long been a priority for chemists, physicists, and materials scientists, given its importance in the biochemical processes of the natural world and in the development of novel technologies. In this vein, the formation of novel metamaterials and sensing platforms resulting from the synergic combination of chirality and plasmonics has opened new avenues in nano-optics. Recently, the implementation of chiral plasmonic nanostructures in photocatalysis has been proposed theoretically as a means to drive polarization-dependent photochemistry. In the present work, we demonstrate that the use of inorganic nanometric chiral templates for the controlled assembly of Au and TiO2 nanoparticles leads to the formation of plasmon-based photocatalysts with polarization-dependent reactivity. The formation of plasmonic assemblies with chiroptical activities induces the asymmetric formation of hot electrons and holes generated via electromagnetic excitation, opening the door to novel photocatalytic and optoelectronic features. More precisely, we demonstrate that the reaction yield can be improved when the helicity of the circularly polarized light used to activate the plasmonic component matches the handedness of the chiral substrate. Our approach may enable new applications in the fields of chirality and photocatalysis, particularly toward plasmon-induced chiral photochemistry.

20.
Chem Commun (Camb) ; 57(90): 12024-12027, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34714304

RESUMEN

Helical and twisted silica nanoribbons, deposited in an in-plane direction and with a random orientation, on a quartz substrate showed chiral optical scattering, and the helical nanoribbons had a g-factor of the order of 10-2 below 250 nm. Their signs depend on the handedness of the nanohelices. The effect of the morphology and the orientation of the helices on the chiral optical scattering were investigated with simulations via the boundary element method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...