Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 8(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36625346

RESUMEN

The liver is a highly regenerative organ, yet the presence of a dedicated stem cell population remains controversial. Here, we interrogate a severe hepatocyte injury model in adult zebrafish to define that regeneration involves a stem cell population. After near-total hepatocyte ablation, single-cell transcriptomic and high-resolution imaging analyses throughout the entire regenerative timeline reveal that biliary epithelial cells undergo transcriptional and morphological changes to become hepatocytes. As a population, biliary epithelial cells give rise to both hepatocytes and biliary epithelial cells. Biliary epithelial cells proliferate and dedifferentiate to express hepatoblast transcription factors prior to hepatocyte differentiation. This process is characterized by increased MAPK, PI3K, and mTOR signaling, and chemical inhibition of these pathways impairs biliary epithelial cell proliferation and fate conversion. We conclude that, upon severe hepatocyte ablation in the adult liver, biliary epithelial cells act as facultative liver stem cells in an EGFR-PI3K-mTOR-dependent manner.


Asunto(s)
Regeneración Hepática , Pez Cebra , Animales , Regeneración Hepática/fisiología , Hígado , Células Epiteliales , Células Madre , Serina-Treonina Quinasas TOR , Fosfatidilinositol 3-Quinasas
2.
JCI Insight ; 7(23)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36477359

RESUMEN

Ethanol (EtOH) is a commonly encountered teratogen that can disrupt organ development and lead to fetal alcohol spectrum disorders (FASDs); many mechanisms of developmental toxicity are unknown. Here, we used transcriptomic analysis in an established zebrafish model of embryonic alcohol exposure (EAE) to identify the ubiquitin-proteasome system (UPS) as a critical target of EtOH during development. Surprisingly, EAE alters 20S, 19S, and 11S proteasome gene expression and increases ubiquitylated protein load. EtOH and its metabolite acetaldehyde decrease proteasomal peptidase activity in a cell type-specific manner. Proteasome 20S subunit ß 1 (psmb1hi2939Tg) and proteasome 26S subunit, ATPase 6 (psmc6hi3593Tg), genetic KOs define the developmental impact of decreased proteasome function. Importantly, loss of psmb1 or psmc6 results in widespread developmental abnormalities resembling EAE phenotypes, including growth restriction, abnormal craniofacial structure, neurodevelopmental defects, and failed hepatopancreas maturation. Furthermore, pharmacologic inhibition of chymotrypsin-like proteasome activity potentiates the teratogenic effects of EAE on craniofacial structure, the nervous system, and the endoderm. Our studies identify the proteasome as a target of EtOH exposure and signify that UPS disruptions contribute to craniofacial, neurological, and endodermal phenotypes in FASDs.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Animales , Pez Cebra , Etanol/toxicidad
3.
Hepatology ; 74(6): 3513-3522, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34256416

RESUMEN

The liver is innervated by autonomic and sensory fibers of the sympathetic and parasympathetic nervous systems that regulate liver function, regeneration, and disease. Although the importance of the hepatic nervous system in maintaining and restoring liver homeostasis is increasingly appreciated, much remains unknown about the specific mechanisms by which hepatic nerves both influence and are influenced by liver diseases. While recent work has begun to illuminate the developmental mechanisms underlying recruitment of nerves to the liver, evolutionary differences contributing to species-specific patterns of hepatic innervation remain elusive. In this review, we summarize current knowledge on the development of the hepatic nervous system and its role in liver regeneration and disease. We also highlight areas in which further investigation would greatly enhance our understanding of the evolution and function of liver innervation.


Asunto(s)
Hepatopatías/patología , Regeneración Hepática , Hígado/inervación , Animales , Humanos , Hígado/crecimiento & desarrollo , Hígado/patología , Regeneración Hepática/fisiología , Ratones
4.
J Vis Exp ; (170)2021 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-33871461

RESUMEN

Liver failure is one of the leading causes of death worldwide, and mortality from chronic liver disease is rising sharply in the United States. Healthy livers are capable of regenerating from toxic damage, but in advanced liver disease, the natural ability of the liver to regenerate is impaired. Zebrafish have emerged as a powerful experimental system for studying regeneration. They are an ideal model for studying liver regeneration from partial hepatectomy, a procedure with direct clinical relevance in which part of the liver is surgically removed, leaving the rest intact. There is no standard protocol for partial hepatectomy; previous studies using this model have used slightly different protocols and reported disparate results. Described here is an efficient, reproducible protocol for performing a partial hepatectomy in adult zebrafish. We use this technique to demonstrate that zebrafish are capable of epimorphic regeneration of the resected lobe. This protocol can be used to further interrogate the mechanisms required for liver regeneration in zebrafish.


Asunto(s)
Hepatectomía , Regeneración Hepática , Hígado/cirugía , Modelos Animales , Pez Cebra , Animales , Femenino , Masculino
5.
PLoS Genet ; 17(3): e1009466, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33780442

RESUMEN

Planarians are flatworms and can perform whole-body regeneration. This ability involves a mechanism to distinguish between anterior-facing wounds that require head regeneration and posterior-facing wounds that require tail regeneration. How this head-tail regeneration polarity decision is made is studied to identify principles underlying tissue-identity specification in regeneration. We report that inhibition of activin-2, which encodes an Activin-like signaling ligand, resulted in the regeneration of ectopic posterior-facing heads following amputation. During tissue turnover in uninjured planarians, positional information is constitutively expressed in muscle to maintain proper patterning. Positional information includes Wnts expressed in the posterior and Wnt antagonists expressed in the anterior. Upon amputation, several wound-induced genes promote re-establishment of positional information. The head-versus-tail regeneration decision involves preferential wound induction of the Wnt antagonist notum at anterior-facing over posterior-facing wounds. Asymmetric activation of notum represents the earliest known molecular distinction between head and tail regeneration, yet how it occurs is unknown. activin-2 RNAi animals displayed symmetric wound-induced activation of notum at anterior- and posterior-facing wounds, providing a molecular explanation for their ectopic posterior-head phenotype. activin-2 RNAi animals also displayed anterior-posterior (AP) axis splitting, with two heads appearing in anterior blastemas, and various combinations of heads and tails appearing in posterior blastemas. This was associated with ectopic nucleation of anterior poles, which are head-tip muscle cells that facilitate AP and medial-lateral (ML) pattern at posterior-facing wounds. These findings reveal a role for Activin signaling in determining the outcome of AP-axis-patterning events that are specific to regeneration.


Asunto(s)
Activinas/genética , Activinas/metabolismo , Tipificación del Cuerpo/genética , Planarias/fisiología , Regeneración/genética , Animales , Técnica del Anticuerpo Fluorescente , Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Interferencia de ARN , Proteínas Wnt/metabolismo
6.
J Clin Invest ; 130(5): 2252-2269, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32202514

RESUMEN

Prenatal alcohol exposure (PAE) affects at least 10% of newborns globally and leads to the development of fetal alcohol spectrum disorders (FASDs). Despite its high incidence, there is no consensus on the implications of PAE on metabolic disease risk in adults. Here, we describe a cohort of adults with FASDs that had an increased incidence of metabolic abnormalities, including type 2 diabetes, low HDL, high triglycerides, and female-specific overweight and obesity. Using a zebrafish model for PAE, we performed population studies to elucidate the metabolic disease seen in the clinical cohort. Embryonic alcohol exposure (EAE) in male zebrafish increased the propensity for diet-induced obesity and fasting hyperglycemia in adulthood. We identified several consequences of EAE that may contribute to these phenotypes, including a reduction in adult locomotor activity, alterations in visceral adipose tissue and hepatic development, and persistent diet-responsive transcriptional changes. Taken together, our findings define metabolic vulnerabilities due to EAE and provide evidence that behavioral changes and primary organ dysfunction contribute to resultant metabolic abnormalities.


Asunto(s)
Diabetes Mellitus Tipo 2 , Trastornos del Espectro Alcohólico Fetal , Obesidad , Efectos Tardíos de la Exposición Prenatal , Adulto , Animales , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Trastornos del Espectro Alcohólico Fetal/metabolismo , Trastornos del Espectro Alcohólico Fetal/patología , Humanos , Recién Nacido , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Transgénicos , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Sistema de Registros , Pez Cebra
7.
Cell Mol Gastroenterol Hepatol ; 8(3): 347-363, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31108233

RESUMEN

The incidence of hepatocellular carcinoma (HCC) and the mortality resulting from HCC are both increasing. Most patients with HCC are diagnosed at advanced stages when curative treatments are impossible. Current drug therapy extends mean overall survival by only a short period of time. Genetic mutations associated with HCC vary widely. Therefore, transgenic and mutant animal models are needed to investigate the molecular effects of specific mutations, classify them as drivers or passengers, and develop targeted treatments. Cirrhosis, however, is the premalignant state common to 90% of HCC patients. Currently, no specific therapies are available to halt or reverse the progression of cirrhosis to HCC. Understanding the genetic drivers of HCC as well as the biochemical, mechanical, hormonal, and metabolic changes associated with cirrhosis could lead to novel treatments and cancer prevention strategies. Although additional therapies recently received Food and Drug Administration approval, significant clinical breakthroughs have not emerged since the introduction of the multikinase inhibitor sorafenib, necessitating alternate research strategies. Zebrafish (Danio rerio) are effective for disease modeling because of their high degree of gene and organ architecture conservation with human beings, ease of transgenesis and mutagenesis, high fecundity, and low housing cost. Here, we review zebrafish models of HCC and identify areas on which to focus future research efforts to maximize the advantages of the zebrafish model system.


Asunto(s)
Carcinoma Hepatocelular/patología , Redes Reguladoras de Genes , Neoplasias Hepáticas/patología , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Hormonas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mutación , Microambiente Tumoral , Pez Cebra
8.
Curr Biol ; 28(23): 3787-3801.e6, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30471994

RESUMEN

Planarians are flatworms capable of regenerating any missing body part in a process requiring stem cells and positional information. Muscle is a major source of planarian positional information and consists of several types of fibers with distinct regulatory roles in regeneration. The transcriptional regulatory programs used to specify different muscle fibers are poorly characterized. Using single-cell RNA sequencing, we define the transcriptomes of planarian dorsal-ventral muscle (DVM), intestinal muscle (IM), and pharynx muscle. This analysis identifies foxF-1, which encodes a broadly conserved Fox-family transcription factor, as a master transcriptional regulator of all non-body wall muscle. The transcription factors encoded by nk4 and gata4/5/6-2 specify two different subsets of DVM, lateral and medial, respectively, whereas gata4/5/6-3 specifies IM. These muscle types all express planarian patterning genes. Both lateral and medial DVM are required for medial-lateral patterning in regeneration, whereas medial DVM and IM have a role in maintaining and regenerating intestine morphology. In addition to the role in muscle, foxF-1 is required for the specification of multiple cell types with transcriptome similarities, including high expression levels of cathepsin genes. These cells include pigment cells, glia, and several other cells with unknown function. cathepsin+ cells phagocytose E. coli, suggesting these are phagocytic cells. In conclusion, we describe a regulatory program for planarian muscle cell subsets and phagocytic cells, both driven by foxF-1. FoxF proteins specify different mesoderm-derived tissues in other organisms, suggesting that FoxF regulates formation of an ancient and broadly conserved subset of mesoderm derivatives in the Bilateria.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Helminto/genética , Planarias/crecimiento & desarrollo , Planarias/genética , Factores de Transcripción/genética , Animales , Proteínas del Helminto/metabolismo , Desarrollo de Músculos/genética , Fagocitos/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma
9.
Cell Rep ; 25(9): 2577-2590.e3, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30485821

RESUMEN

The fundamental requirements for regeneration are poorly understood. Planarians can robustly regenerate all tissues after injury, involving stem cells, positional information, and a set of cellular and molecular responses collectively called the "missing tissue" or "regenerative" response. follistatin, which encodes an extracellular Activin inhibitor, is required for the missing tissue response after head amputation and for subsequent regeneration. We found that follistatin is required for the missing tissue response regardless of the wound context, but causes regeneration failure only after head amputation. This head regeneration failure involves follistatin-mediated regulation of Wnt signaling at wounds and is not a consequence of a diminished missing tissue response. All tested contexts of regeneration, including head regeneration, could occur with a defective missing tissue response, but at a slower pace. Our findings suggest that major cellular and molecular programs induced specifically by large injuries function to accelerate regeneration but are dispensable for regeneration itself.


Asunto(s)
Planarias/genética , Planarias/fisiología , Regeneración , Amputación Quirúrgica , Animales , Tipificación del Cuerpo , Folistatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cabeza , Modelos Biológicos , Planarias/embriología , Interferencia de ARN , Proteína Wnt1/metabolismo
10.
Dev Cell ; 40(5): 491-504.e5, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28292427

RESUMEN

Successful regeneration requires that progenitors of different lineages form the appropriate missing cell types. However, simply generating lineages is not enough. Cells produced by a particular lineage often have distinct functions depending on their position within the organism. How this occurs in regeneration is largely unexplored. In planarian regeneration, new cells arise from a proliferative cell population (neoblasts). We used the planarian epidermal lineage to study how the location of adult progenitor cells results in their acquisition of distinct functional identities. Single-cell RNA sequencing of epidermal progenitors revealed the emergence of distinct spatial identities as early in the lineage as the epidermal neoblasts, with further pre-patterning occurring in their post-mitotic migratory progeny. Establishment of dorsal-ventral epidermal identities and functions, in response to BMP signaling, required neoblasts. Our work identified positional signals that activate regionalized transcriptional programs in the stem cell population and subsequently promote cell-type diversity in the epidermis.


Asunto(s)
Linaje de la Célula , Células Epidérmicas , Planarias/citología , Células Madre/citología , Animales , Biomarcadores/metabolismo , Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Epidermis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mitosis/genética , Modelos Biológicos , Interferencia de ARN , Análisis de Secuencia de ARN , Transducción de Señal/genética , Análisis de la Célula Individual , Células Madre/metabolismo , Factores de Transcripción/metabolismo
11.
Curr Biol ; 27(5): 733-742, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28216315

RESUMEN

Regeneration in many organisms involves the formation of a blastema, which differentiates and organizes into the appropriate missing tissues. How blastema pattern is generated and integrated with pre-existing tissues is a central question in the field of regeneration. Planarians are free-living flatworms capable of rapidly regenerating from small body fragments [1]. A cell cluster at the anterior tip of planarian head blastemas (the anterior pole) is required for anterior-posterior (AP) and medial-lateral (ML) blastema patterning [2-4]. Transplantation of the head tip into tails induced host tissues to grow patterned head-like outgrowths containing a midline. Given the important patterning role of the anterior pole, understanding how it becomes localized during regeneration would help explain how wounds establish pattern in new tissue. Anterior pole progenitors were specified at the pre-existing midline of regenerating fragments, even when this location deviated from the ML median plane of the wound face. Anterior pole progenitors were specified broadly on the dorsal-ventral (DV) axis and subsequently formed a cluster at the DV boundary of the animal. We propose that three landmarks of pre-existing tissue at wounds set the location of anterior pole formation: a polarized AP axis, the pre-existing midline, and the dorsal-ventral median plane. Subsequently, blastema pattern is organized around the anterior pole. This process, utilizing positional information in existing tissue at unpredictably shaped wounds, can influence the patterning of new tissue in a manner that facilitates integration with pre-existing tissue in regeneration.


Asunto(s)
Planarias/fisiología , Regeneración , Animales , Tipificación del Cuerpo , Cabeza/fisiología , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...