Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 10784, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031463

RESUMEN

As the use of engineered nanomaterials increases, so does the risk of them spreading to natural ecosystems. Hitherto, knowledge regarding the toxic properties of nanoparticles (NP's) and their potential interactions with natural bio-organic molecules adsorbed to them, and thereby forming surface coronas, is limited. However, we show here that the toxic effect of NPs of tungsten carbide cobalt (WC-Co) and cobalt (Co) on the crustacean Daphnia magna is postponed in the presence of natural biological degradation products (eco-corona biomolecules). For Daphnia exposed to WC-Co NPs the survival time increased with 20-25% and for Co NPs with 30-47% after mixing the particles with a solution of eco-corona biomolecules before exposure. This suggests that an eco-corona, composed of biomolecules always present in natural ecosystems, reduces the toxic potency of both studied NPs. Further, the eco-coronas did not affect the particle uptake, suggesting that the reduction in toxicity was related to the particle-organism interaction after eco-corona formation. In a broader context, this implies that although the increasing use and production of NPs may constitute a novel, global environmental threat, the acute toxicity and long-term effects of some NPs will, at least under certain conditions, be reduced as they enter natural ecosystems.


Asunto(s)
Cobalto/toxicidad , Daphnia/crecimiento & desarrollo , Nanopartículas del Metal/química , Compuestos de Tungsteno/toxicidad , Adsorción , Animales , Biodegradación Ambiental , Cobalto/química , Daphnia/efectos de los fármacos , Ecosistema , Tamaño de la Partícula , Propiedades de Superficie , Compuestos de Tungsteno/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
2.
Environ Sci Pollut Res Int ; 28(10): 12968-12979, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33097992

RESUMEN

The use of silver nanoparticles (Ag NPs) in consumer products can result in diffuse environmental dispersion of both NPs and ionic silver. This study investigated the transformation of Ag NPs present in two consumer products (skin cream, mouth spray) in terms of release of Ag NPs and ionic silver and changes in particle size in artificial sweat and saliva solutions. Large differences in silver release were observed with the smaller sized Ag NPs in mouth spray releasing more silver compared with the Ag NPs of the skin cream. Substantial particle agglomeration took place in both artificial sweat and saliva, forming large-sized agglomerates (> 100 nm). The amount of dissolved silver in solution after 24 h was less than 10% of the total amount of Ag NPs for both products. The results show that the Ag NPs of these consumer products will largely remain as NPs even after 24 h of skin or saliva contact. The use of normalization by geometric surface area of the particles was tested as a way to compare dissolution for Ag NPs of different characteristics, including pristine, bare, as well as PVP-capped Ag NPs. Normalization of silver dissolution with the geometric surface area was shown promising, but more extensive studies are required to unambiguously conclude whether it is a way forward to enable grouping of the dissolution behavior of Ag NPs released from consumer products.


Asunto(s)
Nanopartículas del Metal , Plata , Tamaño de la Partícula , Saliva , Crema para la Piel , Solubilidad , Sudor
3.
Ann Work Expo Health ; 64(6): 659-675, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32320011

RESUMEN

Nickel (Ni) and cobalt (Co) release from chromium-alloy powders (different stainless steels and a nickel-based Inconel alloy) compared with Ni and Co metal powders was investigated at simulated human exposure scenarios (ingestion, skin contact, and inhalation) between 2 and 168 h. All investigated powders consisted of particles sized within the respirable range. The powder particles and their surface reactivity were studied by means of nitrogen adsorption and electrochemical, spectroscopic (X-ray photoelectron spectroscopy and atomic absorption spectroscopy), light scattering, and microscopic techniques. The release of both Ni and Co was highest in the acidic and complexing fluids simulating the gastric environment and an inhalation scenario of small powders (artificial lysosomal fluid). Relatively high corrosion resistance and lower levels of released Ni and Co were observed in all fluids for all alloy powders compared with the corresponding pure metals. The extent of released metals was low for powders with a passive surface oxide. This study strongly emphasizes the importance of considering alloying effects in toxicological classification and/or regulation of Ni and Co in alloys and metals.


Asunto(s)
Exposición Profesional , Aleaciones , Cobalto , Humanos , Níquel , Polvos , Propiedades de Superficie
4.
Nanomaterials (Basel) ; 10(4)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230801

RESUMEN

Relevant in vitro assays that can simulate exposure to nanoparticles (NPs) via inhalation are urgently needed. Presently, the most common method employed is to expose lung cells under submerged conditions, but the cellular responses to NPs under such conditions might differ from those observed at the more physiological air-liquid interface (ALI). The aim of this study was to investigate the cytotoxic and inflammatory potential of CeO2 NPs (NM-212) in a co-culture of A549 lung epithelial cells and differentiated THP-1 cells in both ALI and submerged conditions. Cellular dose was examined quantitatively using inductively coupled plasma mass spectrometry (ICP-MS). The role of serum and LPS-priming for IL-1ß release was further tested in THP-1 cells in submerged exposure. An aerosol of CeO2 NPs was generated by using the PreciseInhale® system, and NPs were deposited on the co-culture using XposeALI®. No or minor cytotoxicity and no increased release of inflammatory cytokines (IL-1ß, IL-6, TNFα, MCP-1) were observed after exposure of the co-culture in ALI (max 5 µg/cm2) or submerged (max 22 µg/cm2) conditions. In contrast, CeO2 NPs cause clear IL-1ß release in monocultures of macrophage-like THP-1, independent of the presence of serum and LPS-priming. This study demonstrates a useful approach for comparing effects at various in-vitro conditions.

5.
FASEB J ; 34(4): 5262-5281, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32060981

RESUMEN

The neurotoxicity of hard metal-based nanoparticles (NPs) remains poorly understood. Here, we deployed the human neuroblastoma cell line SH-SY5Y differentiated or not into dopaminergic- and cholinergic-like neurons to study the impact of tungsten carbide (WC) NPs, WC NPs sintered with cobalt (Co), or Co NPs versus soluble CoCl2 . Co NPs and Co salt triggered a dose-dependent cytotoxicity with an increase in cytosolic calcium, lipid peroxidation, and depletion of glutathione (GSH). Co NPs and Co salt also suppressed glutathione peroxidase 4 (GPX4) mRNA and protein expression. Co-exposed cells were rescued by N-acetylcysteine (NAC), a precursor of GSH, and partially by liproxstatin-1, an inhibitor of lipid peroxidation. Furthermore, in silico analyses predicted a significant correlation, based on similarities in gene expression profiles, between Co-containing NPs and Parkinson's disease, and changes in the expression of selected genes were validated by RT-PCR. Finally, experiments using primary human dopaminergic neurons demonstrated cytotoxicity and GSH depletion in response to Co NPs and CoCl2 with loss of axonal integrity. Overall, these data point to a marked neurotoxic potential of Co-based but not WC NPs and show that neuronal cell death may occur through a ferroptosis-like mechanism.


Asunto(s)
Diferenciación Celular , Cobalto/química , Neuronas Dopaminérgicas/patología , Ferroptosis , Nanopartículas del Metal/toxicidad , Enfermedades Neurodegenerativas/patología , Células Cultivadas , Neuronas Dopaminérgicas/metabolismo , Glutatión/metabolismo , Humanos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Enfermedades Neurodegenerativas/inducido químicamente
6.
Nanomaterials (Basel) ; 10(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31935871

RESUMEN

The increased use of nanoparticles (NPs) requires efficient testing of their potential toxic effects. A promising approach is to use reporter cell lines to quickly assess the activation of cellular stress response pathways. This study aimed to use the ToxTracker reporter cell lines to investigate (geno)toxicity of various metal- or metal oxide NPs and draw general conclusions on NP-induced effects, in combination with our previous findings. The NPs tested in this study (n = 18) also included quantum dots (QDs) in different sizes. The results showed a large variation in cytotoxicity of the NPs tested. Furthermore, whereas many induced oxidative stress only few activated reporters related to DNA damage. NPs of manganese (Mn and Mn3O4) induced the most remarkable ToxTracker response with activation of reporters for oxidative stress, DNA damage, protein unfolding and p53-related stress. The QDs (CdTe) were highly toxic showing clearly size-dependent effects and calculations suggest surface area as the most relevant dose metric. Of all NPs investigated in this and previous studies the following induce the DNA damage reporter; CuO, Co, CoO, CdTe QDs, Mn, Mn3O4, V2O5, and welding NPs. We suggest that these NPs are of particular concern when considering genotoxicity induced by metal- and metal oxide NPs.

7.
Nanoscale Adv ; 2(2): 648-658, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36133225

RESUMEN

Silver (Ag) nanoparticles are commonly used in consumer products due to their antimicrobial properties. Here we studied the impact of Ag nanoparticles on immune responses by using cell lines of monocyte/macrophage and lung epithelial cell origin, respectively. Short-term experiments (24 h) showed that Ag nanoparticles reduced the lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines in THP-1 cells under serum-free conditions. ICP-MS analysis revealed that cellular uptake of Ag was higher under these conditions. Long-term exposure (up to 6 weeks) of BEAS-2B cells to Ag nanoparticles also suppressed pro-inflammatory cytokine production following a brief challenge with LPS. Experiments using reporter cells revealed that Ag nanoparticles as well as AgNO3 inhibited LPS-triggered Toll-like receptor (TLR) signaling. Furthermore, RNA-sequencing of BEAS-2B cells indicated that Ag nanoparticles affected TLR signaling pathways. In conclusion, Ag nanoparticles reduced the secretion of pro-inflammatory cytokines in response to LPS, likely as a result of the release of silver ions leading to an interference with TLR signaling. This could have implications for the use of Ag nanoparticles as antibacterial agents. Further in vivo studies are warranted to study this.

8.
Nanotoxicology ; 13(10): 1293-1309, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31418618

RESUMEN

Millions of people in the world perform welding as their primary occupation resulting in exposure to metal-containing nanoparticles in the fumes generated. Even though health effects including airway diseases are well-known, there is currently a lack of studies investigating how different welding set-ups and conditions affect the toxicity of generated nanoparticles of the welding fume. The aim of this study was to investigate the toxicity of nine types of welding fume particles generated via active gas shielded metal arc welding (GMAW) of chromium-containing stainless steel under different conditions and, furthermore, to correlate the toxicity to the particle characteristics. Toxicological endpoints investigated were generation of reactive oxygen species (ROS), cytotoxicity, genotoxicity and activation of ToxTracker reporter cell lines. The results clearly underline that the choice of filler material has a large influence on the toxic potential. Fume particles generated by welding with the tested flux-cored wire (FCW) were found to be more cytotoxic compared to particles generated by welding with solid wire or metal-cored wire (MCW). FCW fume particles were also the most potent in causing ROS and DNA damage and they furthermore activated reporters related to DNA double- strand breaks and p53 signaling. Interestingly, the FCW fume particles were the most soluble in PBS, releasing more chromium in the hexavalent form and manganese compared to the other fumes. These results emphasize the importance of solubility of different metal constituents of the fume particles, rather than the total metal content, for their acute toxic potential.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Células Madre Embrionarias/efectos de los fármacos , Pulmón/efectos de los fármacos , Nanopartículas/toxicidad , Acero Inoxidable , Soldadura , Contaminantes Ocupacionales del Aire/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Humanos , Pulmón/metabolismo , Pulmón/patología , Metales Pesados/química , Metales Pesados/toxicidad , Ratones , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Solubilidad
9.
Regul Toxicol Pharmacol ; 106: 15-26, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31028796

RESUMEN

Nickel (Ni) and cobalt (Co) are the most common metal allergens upon skin contact at occupational settings and during consumer handling of metals and alloys. A standardized test (EN, 1811) exists to assess Ni release from articles of metals and alloys in massive forms intended for direct and prolonged skin contact, but no corresponding test exists for other materials such as powders or massive forms of alloys placed on the market or to determine the release of Co, for which only limited data is available. Differences in Ni and Co release from massive forms of a range of common stainless steels and some high-alloyed grades compared to Ni and Co metals were therefore assessed in artificial sweat for 1 week at 30 °C according to EN 1811. A comparable modified test procedure was elaborated and used for powders and some selected massive alloys. All alloys investigated released significantly less amount of Ni (100-5000-fold) and Co (200-400,000-fold) compared with Ni and Co metal, respectively. Almost all alloys showed a lower bioaccessible concentration (0.007-6.8 wt% Ni and 0.00003-0.6 wt% Co) when compared to corresponding bulk alloy contents (0.1-53 wt% Ni, 0.02-65 wt% Co). Observed differences are, among other factors, related to differences in bulk composition and to surface oxide characteristics. For the powders, less Ni and Co were released per surface area, but more per mass, compared to the corresponding massive forms.


Asunto(s)
Aleaciones/análisis , Materiales Biocompatibles/química , Cobalto/análisis , Níquel/análisis , Acero Inoxidable/análisis , Sudor/química , Aleaciones/metabolismo , Cobalto/metabolismo , Níquel/metabolismo , Oxidación-Reducción , Tamaño de la Partícula , Polvos/análisis , Polvos/metabolismo , Propiedades de Superficie
10.
Environ Sci Technol ; 53(8): 4030-4044, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30908015

RESUMEN

Knowledge on relations between particle properties and dissolution/transformation characteristics of metal and metal oxide nanoparticles (NPs) in freshwater is important for risk assessment and product development. This critical review aims to elucidate nanospecific effects on dissolution of metallic NPs in freshwater and similar media. Dissolution rate constants are compiled and analyzed for NPs of silver (Ag), copper (Cu), copper oxide/hydroxide (CuO, Cu(OH)2), zinc oxide (ZnO), manganese (Mn), and aluminum (Al), showing largely varying (orders of magnitude) constants when modeled using first order kinetics. An effect of small primary sizes (<15 nm) was observed, leading to increased dissolution rate constants and solubility in some cases. However, the often extensive particle agglomeration can result in reduced nanospecific effects on dissolution and also an increased uncertainty related to the surface area, a parameter that largely influence the extent of dissolution. Promising ways to model surface areas of NPs in solution using fractal dimensions and size distributions are discussed in addition to nanospecific aspects related to other processes such as corrosion, adsorption of natural organic matter (NOM), presence of capping agents, and existence of surface defects. The importance of the experimental design on the results of dissolution experiments of metal and metal oxide NPs is moreover highlighted, including the influence of ionic metal solubility and choice of particle dispersion methodology.


Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Cobre , Agua Dulce , Plata , Solubilidad
11.
ACS Omega ; 4(26): 21778-21791, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31891055

RESUMEN

Cobalt (Co) nanoparticles (NPs) are produced in different applications and unintentionally generated at several occupational and traffic settings. Their diffuse dispersion may lead to interactions with humans and aquatic organisms via different exposure routes that include their transformation/dissolution in biological media. This paper has investigated the particle stability and reactivity of Co NPs (dispersed by sonication prior to exposure) interacting with selected individual biomolecules (amino acids, polypeptides, and proteins) in phosphate-buffered saline (PBS). No or minor adsorption of amino acids (glutamine, glutamic acid, lysine, and cysteine) was observed on the Co NPs, independent of the functional group and charge. Instead, phosphate adsorption resulted in the formation of a surface layer (a corona) of Co phosphate. The adsorption of larger biomolecules (polyglutamic acid, polylysine, lysozyme, and mucin) was evident in parallel with the formation of Co phosphate. The dissolution of the Co NPs was rapid as 35-55% of the particle mass was dissolved within the first hour of exposure. The larger biomolecules suppressed the dissolution initially compared to exposure in PBS only, whereas the dissolution was essentially unaffected by the presence of amino acids, with cysteine as an exception. The formation of Co phosphate on the NP surface reduced the protective properties of the surface oxide of the Co NPs, as seen from the increased levels of the released Co when compared with the nonphosphate-containing saline. The results underline the diversity of possible outcomes with respect to surface characteristics and dissolution of Co NPs in biological media and emphasize the importance of surface interactions with phosphate on the NP characteristics and reactivity.

12.
J Biomed Mater Res B Appl Biomater ; 107(3): 858-867, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30102828

RESUMEN

The titanium-aluminium (6 wt%)-vanadium (4 wt%) (Ti6Al4V) alloy is widely used as an orthopedic and dental implant material due to its high corrosion resistance in such environments. The corrosion resistance is usually determined by means of electrochemical methods, which may not be able to detect other chemical surface reactions. Literature findings report a synergistic effect of the combination of the abundant protein albumin and hydrogen peroxide (H2 O2 ) on the extent of metal release and corrosion of Ti6Al4V. The objectives of this study were to gain further mechanistic insight on the interplay of H2 O2 and albumin on the metal release process of Ti6Al4V with special focus on (1) kinetics and (2) H2 O2 and albumin concentrations. This was accomplished mainly by metal release and surface oxide composition investigations, which confirmed the combined effect of H2 O2 and albumin on the metal release process, although not detectable by electrochemical open circuit potential measurements. A concentration of 30 mM H2 O2 induced substantial changes in the surface oxide characteristics, an oxide which became thicker and enriched in aluminum. Bovine serum albumin (BSA) seemed to be able to deplete this aluminum content from the outermost surface or at least to delay its surface enrichment. This effect increased with increased BSA concentration, and for time periods longer than 24 h. This study hence suggests that short-term (accelerated) corrosion resistance measurements are not sufficient to predict potential health effects of Ti6Al4V alloys since also chemical dissolution mechanisms play a large role for metal release, possibly in a synergistic way. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 855-867, 2019.


Asunto(s)
Peróxido de Hidrógeno/química , Albúmina Sérica Bovina/química , Titanio/química , Aleaciones , Animales , Bovinos , Corrosión , Oxidación-Reducción
13.
Nanotoxicology ; 12(6): 602-620, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29790399

RESUMEN

An increasing use of cobalt (Co)-based nanoparticles (NPs) in different applications and exposures at occupational settings triggers the need for toxicity assessment. Improved understanding regarding the physiochemical characteristics of Co metal NPs and different oxides in combination with assessment of toxicity and mechanisms may facilitate decisions for grouping during risk assessment. The aim of this study was to gain mechanistic insights in the correlation between NP reactivity and toxicity of three different Co-based NPs (Co, CoO, and Co3O4) by using various tools for characterization, traditional toxicity assays, as well as six reporter cell lines (ToxTracker) for rapid detection of signaling pathways of relevance for carcinogenicity. The results showed cellular uptake of all NPs in lung cells and induction of DNA strand breaks and oxidative damage (comet assay) by Co and CoO NPs. In-depth studies on the ROS generation showed high reactivity of Co, lower for CoO, and no reactivity of Co3O4 NPs. The reactivity depended on the corrosion and transformation/dissolution properties of the particles and the media highlighting the role of the surface oxide and metal speciation as also confirmed by in silico modeling. By using ToxTracker, Co NPs were shown to be highly cytotoxic and induced reporters related to oxidative stress (Nrf2 signaling) and DNA strand breaks. Similar effects were observed for CoO NPs but at higher concentrations, whereas the Co3O4 NPs were inactive at all concentrations tested. In conclusion, our study suggests that Co and CoO NPs, but not Co3O4, may be grouped together for risk assessment.


Asunto(s)
Cobalto/toxicidad , Nanopartículas del Metal/toxicidad , Óxidos/toxicidad , Células A549 , Roturas del ADN/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos
14.
Mutagenesis ; 33(1): 77-85, 2018 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-29529313

RESUMEN

Metallic nanoparticles (NPs) are promising nanomaterials used in different technological solutions as well as in consumer products. Silver (Ag), gold (Au) and platinum (Pt) represent three metallic NPs with current or suggested use in different applications. Pt is also used as vehicle exhaust catalyst leading to a possible exposure via inhalation. Despite their use, there is limited data on their genotoxic potential and possible size-dependent effects, particularly for Pt NPs. The aim of this study was to explore size-dependent genotoxicity of these NPs (5 and 50 nm) following exposure of human bronchial epithelial cells. We characterised the NPs and assessed the viability (Alamar blue assay), formation of DNA strand breaks (mini-gel comet assay) and induction of micronucleus (MN) analysed using flow cytometry (in vitro microflow kit). The results confirmed the primary size (5 and 50 nm) but showed agglomeration of all NPs in the serum free medium used. Slight reduced cell viability (tested up to 50 µg/ml) was observed following exposure to the Ag NPs of both particle sizes as well as to the smallest (5 nm) Au NPs. Similarly, at non-cytotoxic concentrations, both 5 and 50 nm-sized Ag NPs, as well as 5 nm-sized Au NPs, increased DNA strand breaks whereas for Pt NPs only the 50 nm size caused a slight increase in DNA damage. No clear induction of MN was observed in any of the doses tested (up to 20 µg/ml). Taken together, by using the comet assay our study shows DNA strand breaks induced by Ag NPs, without any obvious differences in size, whereas effects from Au and Pt NPs were size-dependent in the sense that the 5 nm-sized Au NPs and 50 nm-sized Pt NPs particles were active. No clear induction of MN was observed for the NPs.


Asunto(s)
Daño del ADN/efectos de los fármacos , Citometría de Flujo/métodos , Oro , Nanopartículas del Metal/toxicidad , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Platino (Metal) , Plata , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa/métodos , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Oro/toxicidad , Nanopartículas del Metal/ultraestructura , Pruebas de Micronúcleos , Pruebas de Mutagenicidad/métodos , Tamaño de la Partícula , Platino (Metal)/toxicidad , Plata/toxicidad
15.
PLoS One ; 13(2): e0192553, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29420670

RESUMEN

This work focuses on kinetic aspects of stability, mobility, and dissolution of bare Cu, Al and Mn, and SiO2 NPs in synthetic freshwater (FW) with and without the presence of natural organic matter (NOM). This includes elucidation of particle and surface interactions, metal dissolution kinetics, and speciation predictions of released metals in solution. Dihydroxy benzoic acid (DHBA) and humic acid adsorbed rapidly on all metal NPs (<1 min) via multiple surface coordinations, followed in general by rapid agglomeration and concomitant sedimentation for a large fraction of the particles. In contrast, NOM did not induce agglomeration of the SiO2 NPs during the test duration (21 days). DHBA in concentrations of 0.1 and 1 mM was unable to stabilize the metal NPs for time periods longer than 6 h, whereas humic acid, at certain concentrations (20 mg/L) was more efficient (>24 h). The presence of NOM increased the amount of released metals into solution, in particular for Al and Cu, whereas the effect for Mn was minor. At least 10% of the particle mass was dissolved within 24 h and remained in solution for the metal NPs in the presence of NOM. Speciation modeling revealed that released Al and Cu predominantly formed complexes with NOM, whereas less complexation was seen for Mn. The results imply that potentially dispersed NPs of Cu, Al and Mn readily dissolve or sediment close to the source in freshwater of low salinity, whereas SiO2 NPs are more stable and therefore more mobile in solution.


Asunto(s)
Benzoatos/química , Exposición a Riesgos Ambientales , Sustancias Húmicas , Nanopartículas del Metal/química , Adsorción , Aluminio/química , Cobre/química , Agua Dulce , Manganeso/química , Modelos Teóricos , Tamaño de la Partícula , Dióxido de Silicio/química , Solubilidad , Termodinámica
16.
J Biomed Mater Res B Appl Biomater ; 106(7): 2673-2680, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29424962

RESUMEN

The extent of metal release from implant materials that are irradiated during radiotherapy may be influenced by irradiation-formed radicals. The influence of gamma irradiation, with a total dose of relevance for radiotherapy (e.g., for cancer treatments) on the extent of metal release from biomedical stainless steel AISI 316L and a cobalt-chromium alloy (CoCrMo) was investigated in physiological relevant solutions (phosphate buffered saline with and without 10 g/L bovine serum albumin) at pH 7.3. Directly after irradiation, the released amounts of metals were significantly higher for irradiated CoCrMo as compared to nonirradiated CoCrMo, resulting in an increased surface passivation (enhanced passive conditions) that hindered further release. A similar effect was observed for 316L showing lower nickel release after 1 h of initially irradiated samples as compared to nonirradiated samples. However, the effect of irradiation (total dose of 16.5 Gy) on metal release and surface oxide composition and thickness was generally small. Most metals were released initially (within seconds) upon immersion from CoCrMo but not from 316L. Albumin induced an increased amount of released metals from AISI 316L but not from CoCrMo. Albumin was not found to aggregate to any greater extent either upon gamma irradiation or in the presence of trace metal ions, as determined using different light scattering techniques. Further studies should elucidate the effect of repeated friction and fractionated low irradiation doses on the short- and long term metal release process of biomedical materials. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2673-2680, 2018.


Asunto(s)
Rayos gamma , Radioterapia , Vitalio/química , Animales , Bovinos , Humanos , Albúmina Sérica Bovina/química
17.
Nanotoxicology ; 12(1): 79-89, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29334298

RESUMEN

As the production and usage of nanomaterials are increasing so are the concerns related to the release of the material into nature. Tungsten carbide (WC) is widely used for its hard metal properties, although its use, in for instance tyre studs, may result in nano-sized particles ending up in nature. Here, we evaluate the potential long-term exposure effects of WC nanoparticles on a pelagic (Daphnia magna) and a benthic (Asellus aquaticus) organism. No long-term effects were observed in the benthic system with respect to population dynamics or ecosystem services. However, long-term exposure of D. magna resulted in increased time to first reproduction and, if the particles were resuspended, strong effects on survival and reproductive output. Hence, the considerable differences in acute vs. long-term exposure studies revealed here emphasize the need for more long-term studies if we are to understand the effects of nanoparticles in natural systems.


Asunto(s)
Daphnia/efectos de los fármacos , Isópodos/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Compuestos de Tungsteno/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Fluorescencia , Nanopartículas del Metal/efectos adversos , Tamaño de la Partícula , Puntos Cuánticos , Factores de Tiempo , Compuestos de Tungsteno/efectos adversos
18.
Environ Mol Mutagen ; 59(3): 211-222, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29243303

RESUMEN

Nickel (Ni) compounds are classified as carcinogenic to humans but the underlying mechanisms are still poorly understood. Furthermore, effects related to nanoparticles (NPs) of Ni have not been fully elucidated. The aim of this study was to investigate genotoxicity and mutagenicity of Ni and NiO NPs and compare the effect to soluble Ni from NiCl2 . We employed different models; i.e., exposure of (1) human bronchial epithelial cells (HBEC) followed by DNA strand break analysis (comet assay and γ-H2AX staining); (2) six different mouse embryonic stem (mES) reporter cell lines (ToxTracker) that are constructed to exhibit fluorescence upon the induction of various pathways of relevance for (geno)toxicity and cancer; and (3) mES cells followed by mutagenicity testing (Hprt assay). The results showed increased DNA strand breaks (comet assay) for the NiO NPs and at higher doses also for the Ni NPs whereas no effects were observed for Ni ions/complexes from NiCl2 . By employing the reporter cell lines, oxidative stress was observed as the main toxic mechanism and protein unfolding occurred at cytotoxic doses for all three Ni-containing materials. Oxidative stress was also detected in the HBEC cells following NP-exposure. None of these materials induced the reporter related to direct DNA damage and stalled replication forks. A small but statistically significant increase in Hprt mutations was observed for NiO but only at one dose. We conclude that Ni and NiO NPs show more pronounced (geno)toxic effects compared to Ni ions/complexes, indicating more serious health concerns. Environ. Mol. Mutagen. 59:211-222, 2018. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Asunto(s)
Ensayo Cometa/métodos , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Hipoxantina Fosforribosiltransferasa/metabolismo , Nanopartículas del Metal/toxicidad , Pruebas de Mutagenicidad/métodos , Níquel/toxicidad , Animales , Bioensayo , Bronquios/efectos de los fármacos , Bronquios/patología , Supervivencia Celular , Células Cultivadas , Daño del ADN , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Genes Reporteros , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Mutágenos/toxicidad , Mutación , Estrés Oxidativo/efectos de los fármacos
19.
Materials (Basel) ; 10(3)2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28772659

RESUMEN

The morphology and elemental composition of cross sections of eight historic copper materials have been explored. The materials were taken from copper roofs installed in different middle and northern European environments from the 16th to the 19th century. All copper substrates contain inclusions of varying size, number and composition, reflecting different copper ores and production methods. The largest inclusions have a size of up to 40 µm, with most inclusions in the size ranging between 2 and 10 µm. The most common element in the inclusions is O, followed by Pb, Sb and As. Minor elements include Ni, Sn and Fe. All historic patinas exhibit quite fragmentized bilayer structures, with a thin inner layer of cuprite (Cu2O) and a thicker outer one consisting mainly of brochantite (Cu4SO4(OH)6). The extent of patina fragmentation seems to depend on the size of the inclusions, rather than on their number and elemental composition. The larger inclusions are electrochemically nobler than the surrounding copper matrix. This creates micro-galvanic effects resulting both in a profound influence on the homogeneity and morphology of historic copper patinas and in a significantly increased ratio of the thicknesses of the brochantite and cuprite layers. The results suggest that copper patinas formed during different centuries exhibit variations in uniformity and corrosion protection ability.

20.
PLoS One ; 12(7): e0181735, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28749997

RESUMEN

The zeta potential (ZP) is a parameter commonly used to characterize metal nanoparticles (NPs) in solution. Such determinations are for example performed in nanotoxicology since the ZP influences e.g. the interaction between cells and different biomolecules. Four case studies on different metal NPs (Cu and Zn NPs, and citrate capped Ag NPs) are presented in this study in order to provide guidance on how to accurately interpret and report ZP data. Solutions of high ionic strength (150 mM NaCl) induce a higher extent of particle agglomeration (elucidated with Ag NPs) when compared with conditions in 10 mM NaCl, which further complicates the prediction of the ZP due to e.g. sedimentation and broadening of the zeta potential distribution. The particle size is seldom included specifically in the standard ways of determining ZP (Hückel and Smoluchowski approximations). However corrections are possible when considering approximations of the Henry function. This was seen to improve the analysis of NPs, since there are cases when both the Hückel and the Smulochowski approximations are invalid. In biomolecule-containing cell media (BEGM), the signal from e.g. proteins may interfere with the measured ZP of the NPs. The intensity distribution of the ZP of both the blank solution and the solution containing NPs should hence be presented in addition to the mean value. Due to an increased ionic strength for dissolving of metal NPs (exemplified by Zn NPs), the released metal ions must be considered when interpreting the zeta potential measurements. In this work the effect was however negligible, as the particle size was several hundred nm, conditions that made the Smoluchowski approximation valid despite an increased ionic strength. However, at low ionic strengths (mM range) and small-sized NPs (tens of nm), the effect of released metal ions can influence the choice of model for determining the zeta potential. Sonication of particle dispersions influences not only the extent of metal release but also the outermost surface oxide composition, which often results in an increased ZP. Surface compositional changes were illustrated for sonicated and non-sonicated Cu NPs. In all, it can be concluded that accurate measurements and interpretations are possible in most cases by collecting and reporting complementary data on characteristics such as particle size, ZP distributions, blank sample information, and particle oxide composition.


Asunto(s)
Nanopartículas del Metal/química , Coloides , Cobre/química , Nanopartículas del Metal/ultraestructura , Concentración Osmolar , Tamaño de la Partícula , Plata/química , Soluciones , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...