Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Res ; 227: 115734, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36963710

RESUMEN

Low haemoglobin (Hb) concentrations and anaemia in children have adverse effects on development and functioning, some of which may have consequences in later life. Exposure to ambient air pollution is reported to be associated with anaemia, but there is little evidence specific to low- and middle-income countries (LMICs), where childhood anaemia prevalence is greatest. We aimed to determine if long-term ambient fine particulate matter (≤2.5 µm in aerodynamic diameter [PM2.5]) exposure was associated with Hb levels and the prevalence of anaemia in children aged <5 years living in 36 LMICs. We used Demographic and Health Survey data, collected between 2010 and 2019, which included blood Hb measurements. Satellite-derived estimates of annual average PM2.5 was the main exposure variable, which was linked to children's area of residence. Anaemia was defined according to standard World Health Organization guidelines (Hb < 11 g/dL). The association of PM2.5 with Hb levels and anaemia prevalence was examined using multivariable linear and logistic regression models, respectively. We examined whether the effects of ambient PM2.5 were modified by a child's sex and age, household wealth index, and urban/rural place of residence. Models were adjusted for relevant covariates, including other outdoor pollutants and household cooking fuel. The study included 154,443 children, of which 89,904 (58.2%) were anaemic. The country-level prevalence of anaemia ranged from 15.8% to 87.9%. Mean PM2.5 exposure was 33.0 (±21.6) µg/m3. The adjusted model showed that a 10 µg/m3 increase in annual PM2.5 concentration was associated with greater odds of anaemia (OR = 1.098 95% CI: 1.087, 1.109). The same increase in PM2.5 was associated with a decrease in average Hb levels of 0.075 g/dL (95% CI: 0.081, 0.068). There was evidence of effect modification by household wealth index and place of residence, with greater adverse effects in children from lower wealth quintiles and children in rural areas. Exposure to annual PM2.5 was cross-sectionally associated with decreased blood Hb levels, and greater risk of anaemia, in children aged <5 years living in 36 LMICs.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Anemia , Humanos , Niño , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Estudios Transversales , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/análisis , Anemia/inducido químicamente , Anemia/epidemiología , Hemoglobinas
2.
Environ Pollut ; 318: 120916, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563987

RESUMEN

Exposure to ambient air pollution may affect cognitive functioning and development in children. Unfortunately, there is little evidence available for low- and middle-income countries (LMICs), where air pollution levels are highest. We analysed the association between exposure to ambient fine particulate matter (≤2.5 µm [PM2.5]) and cognitive development indicators in a cross-sectional analysis of children (aged 3-4 years) in 12 LMICs. We linked Demographic and Health Survey data, conducted between 2011 and 2018, with global estimates of PM2.5 mass concentrations to examine annual average exposure to PM2.5 and cognitive development (literacy-numeracy and learning domains) in children. Cognitive development was assessed using the United Nations Children's Fund's early child development indicators administered to each child's mother. We used multivariable logistic regression models, adjusted for individual- and area-level covariates, and multi-pollutant models (including nitrogen dioxide and surface-level ozone). We assessed if sex and urban/rural status modified the association of PM2.5 with the outcome. We included 57,647 children, of whom, 9613 (13.3%) had indicators of cognitive delay. In the adjusted model, a 5 µg/m3 increase in annual all composition PM2.5 was associated with greater odds of cognitive delay (OR = 1.17; 95% CI: 1.13, 1.22). A 5 µg/m3 increase in anthropogenic PM2.5 was also associated with greater odds of cognitive delay (OR = 1.05; 95% CI: 1.00, 1.10). These results were robust to several sensitivity analyses, including multi-pollutant models. Interaction terms showed that urban-dwelling children had greater odds of cognitive delay than rural-dwelling children, while there was no significant difference by sex. Our findings suggest that annual average exposure to PM2.5 in young children was associated with adverse effects on cognitive development, which may have long-term consequences for educational attainment and health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Femenino , Humanos , Niño , Preescolar , Contaminantes Atmosféricos/análisis , Estudios Transversales , Países en Desarrollo , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/análisis , Contaminantes Ambientales/análisis , Cognición
3.
Environ Int ; 159: 107019, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34875446

RESUMEN

BACKGROUND: Evidence from developed countries suggests that fine particulate matter (≤2.5 µm [PM2.5]) contributes to childhood respiratory morbidity and mortality. However, few analyses have focused on resource-limited settings, where much of this burden occurs. We aimed to investigate the cross-sectional associations between annual average exposure to ambient PM2.5 and acute respiratory infection (ARI) in children aged <5 years living in low- and middle-income countries (LMICs). METHODS: We combined Demographic and Health Survey (DHS) data from 35 countries with gridded global estimates of annual PM2.5 mass concentrations. We analysed the association between PM2.5 and maternal-reported ARI in the two weeks preceding the survey among children aged <5 years living in 35 LMICs. We used multivariable logistic regression models that adjusted for child, maternal, household and cluster-level factors. We also fitted multi-pollutant models (adjusted for nitrogen dioxide [NO2] and surface-level ozone [O3]), among other sensitivity analyses. We assessed whether the associations between PM2.5 and ARI were modified by sex, age and place of residence. RESULTS: The analysis comprised 573,950 children, among whom the prevalence of ARI was 22,506 (3.92%). The mean (±SD) estimated annual concentration of PM2.5 to which children were exposed was 48.2 (±31.0) µg/m3. The 5th and 95th percentiles of PM2.5 were 9.8 µg/m3 and 110.9 µg/m3, respectively. A 10 µg/m3 increase in PM2.5 was associated with greater odds of having an ARI (OR: 1.06; 95% CI: 1.05-1.07). The association between PM2.5 and ARI was robust to adjustment for NO2 and O3. We observed evidence of effect modification by sex, age and place of residence, suggesting greater effects of PM2.5 on ARI in boys, in younger children, and in children living in rural areas. CONCLUSIONS: Annual average ambient PM2.5, as an indicator for long-term exposure, was associated with greater odds of maternal-reported ARI in children aged <5 years living in 35 LMICs. Longitudinal studies in LMICs are required to corroborate our cross-sectional findings, to further elucidate the extent to which lowering PM2.5 may have a role in the global challenge of reducing ARI-related morbidity and mortality in children.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Niño , Preescolar , Estudios Transversales , Países en Desarrollo , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Masculino , Material Particulado/efectos adversos , Material Particulado/análisis
4.
Artículo en Inglés | MEDLINE | ID: mdl-33546363

RESUMEN

The domestic combustion of polluting fuels is associated with an estimated 3 million premature deaths each year and contributes to climate change. In many low- and middle-income countries (LMICs), valid and representative estimates of people exposed to household air pollution (HAP) are scarce. The Demographic and Health Survey (DHS) is an important and consistent source of data on household fuel use for cooking and has facilitated studies of health effects. However, the body of research based on DHS data has not been systematically identified, nor its strengths and limitations critically assessed as a whole. We aimed to systematically review epidemiological studies using DHS data that considered cooking fuel type as the main exposure, including the assessment of the extent and key drivers of bias. Following PRISMA guidelines, we searched PubMed, Web of Science, Scopus and the DHS publication portal. We assessed the quality and risk of bias (RoB) of studies using a novel tool. Of 2748 records remaining after removing duplicates, 63 were read in full. A total of 45 out of 63 studies were included in our review, spanning 11 different health outcomes and representing 50 unique analyses. In total, 41 of 45 (91%) studies analysed health outcomes in children <5 years of age, including respiratory infections (n = 17), death (all-cause) (n = 14), low birthweight (n = 5), stunting and anaemia (n = 5). Inconsistencies were observed between studies in how cooking fuels were classified into relatively high- and low-polluting. Overall, 36/50 (80%) studies reported statistically significant adverse associations between polluting fuels and health outcomes. In total, 18/50 (36%) of the analyses were scored as having moderate RoB, while 16/50 (32%) analyses were scored as having serious or critical RoB. Although HAP exposure assessment is not the main focus of the DHS, it is the main, often only, source of information in many LMICs. An appreciable proportion of studies using it to analyse the association between cooking fuel use and health have potential for high RoB, mostly related to confounder control, exposure assessment and misclassification, and outcome ascertainment. Based on our findings, we provide some suggestions for ways in which revising the information collected by the DHS could make it even more amenable to studies of household fuel use and health, and reduce the RoB, without being onerous to collect and analyse.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Niño , Culinaria , Estudios Epidemiológicos , Composición Familiar , Encuestas Epidemiológicas , Humanos , Recién Nacido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...