Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39229114

RESUMEN

Purpose: Relaxometry, specifically T 1 and T 2 mapping, has become an essential technique for assessing the properties of biological tissues related to various physiological and pathological conditions. Many techniques are being used to estimate T 1 and T 2 relaxation times, ranging from the traditional inversion or saturation recovery and spin-echo sequences to more advanced methods. Choosing the appropriate method for a specific application is critical since the precision and accuracy of T 1 and T 2 measurements are influenced by a variety of factors including the pulse sequence and its parameters, the inherent properties of the tissue being examined, the MRI hardware, and the image reconstruction. The aim of this study is to evaluate and compare the test-retest reproducibility of two advanced MRI relaxometry techniques (Driven Equilibrium Single Pulse Observation of T 1 and T 2, DESPOT, and 3D Quantification using an interleaved Look-Locker acquisition Sequence with a T 2 preparation pulse, QALAS), for T 1 and T 2 mapping in a healthy volunteer cohort. Methods: 10 healthy volunteers underwent brain MRI at 1.3 mm3 isotropic resolution, acquiring DESPOT and QALAS data (~11.8 and ~5 minutes duration, including field maps, respectively), test-retest with subject repositioning, on a 3.0 Tesla Philips Ingenia Elition scanner. To reconstruct the T 1 and T 2 maps, we used an equation-based algorithm for DESPOT and a dictionary-based algorithm that incorporates inversion efficiency and B 1 -field inhomogeneity for QALAS. The test-retest reproducibility was assessed using the coefficient of variation (CoV), intraclass correlation coefficient (ICC) and Bland-Altman plots. Results: Our results indicate that both the DESPOT and QALAS techniques demonstrate good levels of test-retest reproducibility for T 1 and T 2 mapping across the brain. Higher whole-brain voxel-to-voxel ICCs are observed in QALAS for T 1 (0.84 ± 0.039) and in DESPOT for T 2 (0.897 ± 0.029). The Bland-Altman plots show smaller bias and variability of T 1 estimates for QALAS (mean of -0.02 s, and upper and lower limits of -0.14 and 0.11 s, 95% CI) than for DESPOT (mean of -0.02 s, and limits of -0.31 and 0.27 s). QALAS also showed less variability (mean 1.08 ms, limits -1.88 to 4.04 ms) for T 2 compared to DESPOT (mean of 2.56 ms, and limits -17.29 to 22.41 ms). The within-subject CoVs for QALAS range from 0.6% (T 2 in CSF) to 5.8% (T 2 in GM), while for DESPOT they range from 2.1% (T 2 in CSF) to 6.7% (T 2 in GM). The between-subject CoVs for QALAS range from 2.5% (T 2 in GM) to 12% (T 2 in CSF), and for DESPOT they range from 3.7% (T 2 in WM) to 9.3% (T 2 in CSF). Conclusion: Overall, QALAS demonstrated better reproducibility for T 1 and T 2 measurements than DESPOT, in addition to reduced acquisition time.

2.
Neurobiol Aging ; 142: 27-40, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111221

RESUMEN

Positron emission tomography (PET) and magnetic resonance spectroscopy (1H-MRS) are complementary techniques that can be applied to study how proteinopathy and neurometabolism relate to cognitive deficits in preclinical stages of Alzheimer's disease (AD)-mild cognitive impairment (MCI) and late-life depression (LLD). We acquired beta-amyloid (Aß) PET and 7 T 1H-MRS measures of GABA, glutamate, glutathione, N-acetylaspartate, N-acetylaspartylglutamate, myo-inositol, choline, and lactate in the anterior and posterior cingulate cortices (ACC, PCC) in 13 MCI and 9 LLD patients, and 13 controls. We used linear regression to examine associations between metabolites, Aß, and cognitive scores, and whether metabolites and Aß explained cognitive scores better than Aß alone. In the ACC, higher Aß was associated with lower GABA in controls but not MCI or LLD patients, but results depended upon MRS data quality control criteria. Greater variance in California Verbal Learning Test scores was better explained by a model that combined ACC glutamate and Aß deposition than by models that only included one of these variables. These findings identify preliminary associations between Aß, neurometabolites, and cognition.


Asunto(s)
Péptidos beta-Amiloides , Disfunción Cognitiva , Depresión , Tomografía de Emisión de Positrones , Humanos , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Anciano , Femenino , Masculino , Péptidos beta-Amiloides/metabolismo , Tomografía de Emisión de Positrones/métodos , Depresión/metabolismo , Depresión/diagnóstico por imagen , Giro del Cíngulo/metabolismo , Giro del Cíngulo/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/patología , Espectroscopía de Resonancia Magnética/métodos , Anciano de 80 o más Años , Persona de Mediana Edad , Tiazoles , Imagen Multimodal/métodos , Compuestos de Anilina
3.
J Neurosci ; 44(36)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39134417

RESUMEN

Cognitive flexibility represents the capacity to switch among different mental schemes, providing an adaptive advantage to a changing environment. The neural underpinnings of this executive function have been deeply studied in humans through fMRI, showing that the left inferior frontal cortex (IFC) and the left inferior parietal lobule (IPL) are crucial. Here, we investigated the inhibitory-excitatory balance in these regions by means of γ-aminobutyric acid (GABA+) and glutamate + glutamine (Glx), measured with magnetic resonance spectroscopy, during a cognitive flexibility task and its relationship with the performance level and the local task-induced blood oxygenation level-dependent (BOLD) response in 40 young (18-35 years; 26 female) and 40 older (18-35 years; 21 female) human adults. As the IFC and the IPL are richly connected regions, we also examined whole-brain effects associated with their local metabolic activity. Results did not show absolute metabolic modulations associated with flexibility performance, but the performance level was related to the direction of metabolic modulation in the IPL with opposite patterns in young and older individuals. The individual inhibitory-excitatory balance modulation showed an inverse relationship with the local BOLD response in the IPL. Finally, the modulation of inhibitory-excitatory balance in IPL was related to whole-brain effects only in older individuals. These findings show disparities in the metabolic mechanisms underlying cognitive flexibility in young and older adults and their association with the performance level and BOLD response. Such metabolic differences are likely to play a role in executive functioning during aging and specifically in cognitive flexibility.


Asunto(s)
Envejecimiento , Cognición , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Adulto , Adulto Joven , Adolescente , Cognición/fisiología , Envejecimiento/fisiología , Encéfalo/fisiología , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Función Ejecutiva/fisiología , Mapeo Encefálico , Ácido gamma-Aminobutírico/metabolismo , Espectroscopía de Resonancia Magnética , Ácido Glutámico/metabolismo
4.
bioRxiv ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38979133

RESUMEN

Purpose: Relaxation correction is crucial for accurately estimating metabolite concentrations measured using in vivo magnetic resonance spectroscopy (MRS). However, the majority of MRS quantification routines assume that relaxation values remain constant across the lifespan, despite prior evidence of T2 changes with aging for multiple of the major metabolites. Here, we comprehensively investigate correlations between T2 and age in a large, multi-site cohort. Methods: We recruited approximately 10 male and 10 female participants from each decade of life: 18-29, 30-39, 40-49, 50-59, and 60+ years old (n=101 total). We collected PRESS data at 8 TEs (30, 50, 74, 101, 135, 179, 241, and 350 ms) from voxels placed in white-matter-rich centrum semiovale (CSO) and gray-matter-rich posterior cingulate cortex (PCC). We quantified metabolite amplitudes using Osprey and fit exponential decay curves to estimate T2. Results: Older age was correlated with shorter T2 for tNAA, tCr3.0, tCr3.9, tCho, Glx, and tissue water in CSO and PCC; rs = -0.21 to -0.65, all p<0.05, FDR-corrected for multiple comparisons. These associations remained statistically significant when controlling for cortical atrophy. T2 values did not differ across the adult lifespan for mI. By region, T2 values were longer in the CSO for tNAA, tCr3.0, tCr3.9, Glx, and tissue water and longer in the PCC for tCho and mI. Conclusion: These findings underscore the importance of considering metabolite T2 changes with aging in MRS quantification. We suggest that future 3T work utilize the equations presented here to estimate age-specific T2 values instead of relying on uniform default values.

5.
Magn Reson Med ; 92(5): 2222-2236, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38988088

RESUMEN

PURPOSE: Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a 2D linear-combination model (2D-LCM) of individual transients ("model-based FPC"). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates. METHODS: We created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the SD of those ground-truth errors, and amplitude Cramér Rao lower bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data. RESULTS: 2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of FPC and amplitudes performed substantially better at low-to-very-low SNR. CONCLUSION: Model-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, for example, long TEs or strong diffusion weighting.


Asunto(s)
Algoritmos , Encéfalo , Relación Señal-Ruido , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Lineales , Procesamiento de Imagen Asistido por Computador/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos
6.
J Neurosci Methods ; 409: 110206, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942238

RESUMEN

BACKGROUND: To examine data quality and reproducibility using ISTHMUS, which has been implemented as the standardized MR spectroscopy sequence for the multi-site Healthy Brain and Child Development (HBCD) study. METHODS: ISTHMUS is the consecutive acquisition of short-TE PRESS (32 transients) and long-TE HERCULES (224 transients) data with dual-TE water reference scans. Voxels were positioned in the centrum semiovale, dorsal anterior cingulate cortex, posterior cingulate cortex and bilateral thalamus regions. After acquisition, ISTHMUS data were separated into the PRESS and HERCULES portions for analysis and modeled separately using Osprey. In vivo experiments were performed in 10 healthy volunteers (6 female; 29.5±6.6 years). Each volunteer underwent two scans on the same day. Differences in metabolite measurements were examined. T2 correction based on the dual-TE water integrals were compared with: 1) T2 correction based on the default white matter and gray matter T2 reference values in Osprey and 2) shorter WM and GM T2 values from recent literature. RESULTS: No significant difference in linewidth was observed between PRESS and HERCULES. Bilateral thalamus spectra had produced significantly higher (p<0.001) linewidth compared to the other three regions. Linewidth measurements were similar between scans, with scan-to-scan differences under 1 Hz for most subjects. Paired t-tests indicated a significant difference only in PRESS NAAG between the two thalamus scans (p=0.002). T2 correction based on shorter T2 values showed better agreement to the dual-TE water integral ratio. CONCLUSIONS: ISTHMUS facilitated data acquisition and post-processing and reduced operator workload to eliminate potential human error.


Asunto(s)
Espectroscopía de Resonancia Magnética , Humanos , Femenino , Adulto , Masculino , Espectroscopía de Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Adulto Joven , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/anatomía & histología
7.
Magn Reson Med ; 92(4): 1456-1470, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38748853

RESUMEN

PURPOSE: To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS: Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS: The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION: The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.


Asunto(s)
Amidas , Encéfalo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Amidas/química , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Reproducibilidad de los Resultados , Imagen Eco-Planar/métodos , Glioma/diagnóstico por imagen , Algoritmos , Relación Señal-Ruido , Neoplasias Encefálicas/diagnóstico por imagen , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Femenino , Guanidina/química
8.
Magn Reson Med ; 92(4): 1348-1362, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38818623

RESUMEN

PURPOSE: The J-difference edited γ-aminobutyric acid (GABA) signal is contaminated by other co-edited signals-the largest of which originates from co-edited macromolecules (MMs)-and is consequently often reported as "GABA+." MM signals are broader and less well-characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus-recommended alternative to parameterized modeling; however, they are relatively under-studied in the context of edited MRS. METHODS: To address this limitation in the literature, we have acquired GABA-edited MEGA-PRESS data with pre-inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single-Gaussian parameterization, mean experimental MM spectrum and new multi-Gaussian parameterization were compared in a three-way analysis of a public MEGA-PRESS dataset of 61 healthy participants. RESULTS: Both the experimental MMs and the multi-Gaussian parameterization exhibited reduced fit residuals compared to the single-Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single-Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi-Gaussian parameterization (58%), compared to the single-Gaussian approach (50%). CONCLUSIONS: Our results indicate that single-Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra.


Asunto(s)
Sustancias Macromoleculares , Ácido gamma-Aminobutírico , Ácido gamma-Aminobutírico/metabolismo , Humanos , Femenino , Adulto , Masculino , Sustancias Macromoleculares/metabolismo , Espectroscopía de Resonancia Magnética , Distribución Normal , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Modelos Lineales , Algoritmos , Adulto Joven
9.
Magn Reson Med ; 92(3): 916-925, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38649977

RESUMEN

PURPOSE: The interest in applying and modeling dynamic MRS has recently grown. Two-dimensional modeling yields advantages for the precision of metabolite estimation in interrelated MRS data. However, it is unknown whether including all transients simultaneously in a 2D model without averaging (presuming a stable signal) performs similarly to one-dimensional (1D) modeling of the averaged spectrum. Therefore, we systematically investigated the accuracy, precision, and uncertainty estimation of both described model approaches. METHODS: Monte Carlo simulations of synthetic MRS data were used to compare the accuracy and uncertainty estimation of simultaneous 2D multitransient linear-combination modeling (LCM) with 1D-LCM of the average. A total of 2,500 data sets per condition with different noise representations of a 64-transient MRS experiment at six signal-to-noise levels for two separate spin systems (scyllo-inositol and gamma-aminobutyric acid) were analyzed. Additional data sets with different levels of noise correlation were also analyzed. Modeling accuracy was assessed by determining the relative bias of the estimated amplitudes against the ground truth, and modeling precision was determined by SDs and Cramér-Rao lower bounds (CRLBs). RESULTS: Amplitude estimates for 1D- and 2D-LCM agreed well and showed a similar level of bias compared with the ground truth. Estimated CRLBs agreed well between both models and with ground-truth CRLBs. For correlated noise, the estimated CRLBs increased with the correlation strength for the 1D-LCM but remained stable for the 2D-LCM. CONCLUSION: Our results indicate that the model performance of 2D multitransient LCM is similar to averaged 1D-LCM. This validation on a simplified scenario serves as a necessary basis for further applications of 2D modeling.


Asunto(s)
Algoritmos , Simulación por Computador , Espectroscopía de Resonancia Magnética , Método de Montecarlo , Espectroscopía de Resonancia Magnética/métodos , Humanos , Reproducibilidad de los Resultados , Modelos Lineales , Sensibilidad y Especificidad , Relación Señal-Ruido , Ácido gamma-Aminobutírico/metabolismo , Modelos Estadísticos
10.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585798

RESUMEN

Purpose: Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a two-dimensional linear-combination model (2D-LCM) of individual transients ('model-based FPC'). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates. Methods: We created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the standard deviation of those ground-truth errors, and amplitude Cramér Rao Lower Bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data. Results: 2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of frequency and phase correction and amplitudes performed substantially better at low-to-very-low SNR. Conclusion: Model-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, e.g., long TEs or strong diffusion weighting.

11.
ArXiv ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38584615

RESUMEN

Recent expert consensus publications have highlighted the issue of poor reproducibility in magnetic resonance spectroscopy (MRS) studies, mainly due to the lack of standardized reporting criteria, which affects their clinical applicability. To combat this, guidelines for minimum reporting standards (MRSinMRS) were introduced to aid journal editors and reviewers in ensuring the comprehensive documentation of essential MRS study parameters. Despite these efforts, the implementation of MRSinMRS standards has been slow, attributed to the diverse nomenclature used by different vendors, the variety of raw MRS data formats, and the absence of appropriate software tools for identifying and reporting necessary parameters. To overcome this obstacle, we have developed the REproducibility Made Easy (REMY) standalone toolbox. REMY software supports a range of MRS data formats from major vendors like GE (p. file), Siemens (twix, .rda, .dcm), Philips (.spar/.sdat), and Bruker (.method), facilitating easy data import and export through a user-friendly interface. REMY employs external libraries such as spec2nii and pymapVBVD to accurately read and process these diverse data formats, ensuring compatibility and ease of use for researchers in generating reproducible MRS research outputs. Users can select and import datasets, choose the appropriate vendor and data format, and then generate an MRSinMRS table, log file, and methodological documents in both Latex and PDF formats. REMY effectively populated key sections of the MRSinMRS table with data from all supported file types. Accurate generation of hardware parameters including field strength, manufacturer, and scanner software version were demonstrated. However, it could not input data for RF coil and additional hardware information due to their absence in the files. For the acquisition section, REMY accurately read and populated fields for the pulse sequence name, nominal voxel size, repetition time (TR), echo time (TE), number of acquisitions/excitations/shots, spectral width [Hz], and number of spectral points, significantly contributing to the completion of the Acquisition fields of the table. Furthermore, REMY generates a boilerplate methods text section for manuscripts.The use of REMY will facilitate more widespread adoption of the MRSinMRS checklist within the MRS community, making it easier to write and report acquisition parameters effectively.

12.
NMR Biomed ; 37(9): e5152, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38565525

RESUMEN

Relaxation correction is an integral step in quantifying brain metabolite concentrations measured by in vivo magnetic resonance spectroscopy (MRS). While most quantification routines assume constant T1 relaxation across age, it is possible that aging alters T1 relaxation rates, as is seen for T2 relaxation. Here, we investigate the age dependence of metabolite T1 relaxation times at 3 T in both gray- and white-matter-rich voxels using publicly available metabolite and metabolite-nulled (single inversion recovery TI = 600 ms) spectra acquired at 3 T using Point RESolved Spectroscopy (PRESS) localization. Data were acquired from voxels in the posterior cingulate cortex (PCC) and centrum semiovale (CSO) in 102 healthy volunteers across 5 decades of life (aged 20-69 years). All spectra were analyzed in Osprey v.2.4.0. To estimate T1 relaxation times for total N-acetyl aspartate at 2.0 ppm (tNAA2.0) and total creatine at 3.0 ppm (tCr3.0), the ratio of modeled metabolite residual amplitudes in the metabolite-nulled spectrum to the full metabolite signal was calculated using the single-inversion-recovery signal equation. Correlations between T1 and subject age were evaluated. Spearman correlations revealed that estimated T1 relaxation times of tNAA2.0 (rs = -0.27; p < 0.006) and tCr3.0 (rs = -0.40; p < 0.001) decreased significantly with age in white-matter-rich CSO, and less steeply for tNAA2.0 (rs = -0.228; p = 0.005) and (not significantly for) tCr3.0 (rs = -0.13; p = 0.196) in graymatter-rich PCC. The analysis harnessed a large publicly available cross-sectional dataset to test an important hypothesis, that metabolite T1 relaxation times change with age. This preliminary study stresses the importance of further work to measure age-normed metabolite T1 relaxation times for accurate quantification of metabolite levels in studies of aging.


Asunto(s)
Espectroscopía de Resonancia Magnética , Humanos , Adulto , Persona de Mediana Edad , Anciano , Masculino , Femenino , Adulto Joven , Envejecimiento/metabolismo , Envejecimiento/fisiología , Longevidad , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen
13.
bioRxiv ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38659947

RESUMEN

Background: To examine data quality and reproducibility using ISTHMUS, which has been implemented as the standardized MR spectroscopy sequence for the multi-site Healthy Brain and Child Development (HBCD) study. Methods: ISTHMUS is the consecutive acquisition of short-TE PRESS (32 transients) and long-TE HERCULES (224 transients) data with dual-TE water reference scans. Voxels were positioned in the centrum semiovale, dorsal anterior cingulate cortex, posterior cingulate cortex and bilateral thalamus regions. After acquisition, ISTHMUS data were separated into the PRESS and HERCULES portions for analysis and modeled separately using Osprey. In vivo experiments were performed in 10 healthy volunteers (6 female; 29.5±6.6 years). Each volunteer underwent two scans on the same day. Differences in metabolite measurements were examined. T2 correction based on the dual-TE water integrals were compared with: 1) T2 correction based the default white matter and gray matter T2 reference values in Osprey; 2) shorter WM and GM T2 values from recent literature; and 3) reduced CSF fractions. Results: No significant difference in linewidth was observed between PRESS and HERCULES. Bilateral thalamus spectra had produced significantly higher (p<0.001) linewidth compared to the other three regions. Linewidth measurements were similar between scans, with scan-to-scan differences under 1 Hz for most subjects. Paired t-tests indicated a significant difference only in PRESS NAAG between the two thalamus scans (p=0.002). T2 correction based on shorter T2 values showed better agreement to the dual-TE water integral ratio. Conclusions: ISTHMUS facilitated and standardized acquisition and post-processing and reduced operator workload to eliminate potential human error.

14.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464094

RESUMEN

J-difference-edited MRS is widely used to study GABA in the human brain. Editing for low-concentration target molecules (such as GABA) typically exhibits lower signal-to-noise ratio (SNR) than conventional non-edited MRS, varying with acquisition region, volume and duration. Moreover, spectral lineshape may be influenced by age-, pathology-, or brain-region-specific effects of metabolite T2, or by task-related blood-oxygen level dependent (BOLD) changes in functional MRS contexts. Differences in both SNR and lineshape may have systematic effects on concentration estimates derived from spectral modelling. The present study characterises the impact of lineshape and SNR on GABA+ estimates from different modelling algorithms: FSL-MRS, Gannet, LCModel, Osprey, spant and Tarquin. Publicly available multi-site GABA-edited data (222 healthy subjects from 20 sites; conventional MEGA-PRESS editing; TE = 68 ms) were pre-processed with a standardised pipeline, then filtered to apply controlled levels of Lorentzian and Gaussian linebroadening and SNR reduction. Increased Lorentzian linewidth was associated with a 2-5% decrease in GABA+ estimates per Hz, observed consistently (albeit to varying degrees) across datasets and most algorithms. Weaker, often opposing effects were observed for Gaussian linebroadening. Variations are likely caused by differing baseline parametrization and lineshape constraints between models. Effects of linewidth on other metabolites (e.g., Glx and tCr) varied, suggesting that a linewidth confound may persist after scaling to an internal reference. These findings indicate a potentially significant confound for studies where linewidth may differ systematically between groups or experimental conditions, e.g. due to T2 differences between brain regions, age, or pathology, or varying T2* due to BOLD-related changes. We conclude that linewidth effects need to be rigorously considered during experimental design and data processing, for example by incorporating linewidth into statistical analysis of modelling outcomes or development of appropriate lineshape matching algorithms.

15.
Autism Res ; 17(3): 512-528, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38279628

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a cohort of children aged 8-12 years with ASD (n = 52) and typically developing children (TDC, n = 49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Niño , Humanos , Espectroscopía de Resonancia Magnética/métodos , Trastorno Autístico/metabolismo , Encéfalo , Glutatión/metabolismo , Ácido gamma-Aminobutírico/metabolismo
16.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260650

RESUMEN

Purpose: The interest in applying and modeling dynamic MRS has recently grown. 2D modeling yields advantages for the precision of metabolite estimation in interrelated MRS data. However, it is unknown whether including all transients simultaneously in a 2D model without averaging (presuming a stable signal) performs similarly to 1D modeling of the averaged spectrum. Therefore, we systematically investigated the accuracy, precision, and uncertainty estimation of both described model approaches. Methods: Monte Carlo simulations of synthetic MRS data were used to compare the accuracy and uncertainty estimation of simultaneous 2D multi-transient LCM with 1D-LCM of the average. 2,500 datasets per condition with different noise representations of a 64-transient MRS experiment at 6 signal-to-noise levels for two separate spin systems (scyllo-inositol and GABA) were analyzed. Additional datasets with different levels of noise correlation were also analyzed. Modeling accuracy was assessed by determining the relative bias of the estimated amplitudes against the ground truth, and modeling precision was determined by standard deviations and Cramér-Rao Lower Bounds (CRLB). Results: Amplitude estimates for 1D- and 2D-LCM agreed well and showed similar level of bias compared to the ground truth. Estimated CRLBs agreed well between both models and with ground truth CRLBs. For correlated noise the estimated CRLBs increased with the correlation strength for the 1D-LCM but remained stable for the 2D-LCM. Conclusion: Our results indicate that the model performance of 2D multi-transient LCM is similar to averaged 1D-LCM. This validation on a simplified scenario serves as necessary basis for further applications of 2D modeling.

17.
NMR Biomed ; 37(4): e5076, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38091628

RESUMEN

Literature values vary widely for within-subject test-retest reproducibility of gamma-aminobutyric acid (GABA) measured with edited magnetic resonance spectroscopy (MRS). Reasons for this variation remain unclear. Here, we tested whether three acquisition parameters-(1) sequence complexity (two-experiment MEscher-GArwood Point RESolved Spectroscopy [MEGA-PRESS] vs. four-experiment Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy [HERMES]); (2) editing pulse duration (14 vs. 20 ms); and (3) scanner frequency drift (interleaved water referencing [IWR] turned ON vs. OFF)-and two linear combination modeling variations-(1) three different coedited macromolecule models (called "1to1GABA", "1to1GABAsoft", and "3to2MM" in the Osprey software package); and (2) 0.55- versus 0.4-ppm spline baseline knot spacing-affected the within-subject coefficient of variation of GABA + macromolecules (GABA+). We collected edited MRS data from the dorsal anterior cingulate cortex from 20 participants (mean age: 30.8 ± 9.5 years; 10 males). Test and retest scans were separated by removing the participant from the scanner for 5-10 min. Each acquisition consisted of two MEGA-PRESS and two HERMES sequences with editing pulse durations of 14 and 20 ms (referred to here as MEGA-14, MEGA-20, HERMES-14, and HERMES-20; all TE = 80 ms, 224 averages). We identified the best test-retest reproducibility following postprocessing with a composite model of the 0.9- and 3-ppm macromolecules ("3to2MM"); this model performed particularly well for the HERMES data. Furthermore, sparser (0.55- compared with 0.4-ppm) spline baseline knot spacing yielded generally better test-retest reproducibility for GABA+. Replicating our prior results, linear combination modeling in Osprey compared with simple peak fitting in Gannet resulted in substantially better test-retest reproducibility. However, reproducibility did not consistently differ for MEGA-PRESS compared with HERMES, for 14- compared with 20-ms editing pulses, or for IWR-ON versus IWR-OFF. These results highlight the importance of model selection for edited MRS studies of GABA+, particularly for clinical studies that focus on individual patient differences in GABA+ or changes following an intervention.


Asunto(s)
Encéfalo , Ácido gamma-Aminobutírico , Masculino , Humanos , Adulto Joven , Adulto , Reproducibilidad de los Resultados , Espectroscopía de Resonancia Magnética/métodos , Fantasmas de Imagen , Sustancias Macromoleculares/metabolismo , Encéfalo/metabolismo
18.
Magn Reson Med ; 91(3): 860-885, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946584

RESUMEN

Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on "Best Practices & Tools for Diffusion MR Spectroscopy" held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Consenso , Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Difusión , Imagen de Difusión por Resonancia Magnética/métodos
19.
Magn Reson Med ; 91(2): 431-442, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37876339

RESUMEN

PURPOSE: To compare the respective ability of PRESS and sLASER to reveal biological relationships, using age as a validation covariate at 3 T. METHODS: MRS data were acquired from 102 healthy volunteers using PRESS and sLASER in centrum semiovale and posterior cingulate cortex (PCC). Acquisition parameters included TR/TE = 2000/30 ms, 96 transients, and 2048 datapoints sampled at 2 kHz. Spectra were analyzed using Osprey. SNR, FWHM linewidth of total creatine, and metabolite concentrations were extracted. A linear model was used to compare SNR and linewidth. Paired t-tests were used to assess differences in metabolite measurements between PRESS and sLASER. Correlations were used to evaluate the relationship between PRESS and sLASER metabolite estimates, as well as the strength of each metabolite-age relationship. Coefficients of variation were calculated to assess inter-subject variability in each metabolite measurement. RESULTS: SNR and linewidth were significantly higher (p < 0.01) for sLASER than PRESS in PCC. Paired t-tests showed significant differences between PRESS and sLASER in most metabolite measurements. PRESS-sLASER measurements were significantly correlated (p < 0.05) for most metabolites. Metabolite-age relationships were consistently identified using both methods. Similar coefficients of variation were observed for most metabolites. CONCLUSION: The study results suggest strong agreement between PRESS and sLASER in identifying relationships between brain metabolites and age in centrum semiovale and PCC data acquired at 3 T. sLASER is technically desirable due to the reduced chemical shift displacement artifact; however, PRESS performed similarly in homogeneous brain regions at clinical field strength.


Asunto(s)
Encéfalo , Cuerpo Calloso , Humanos , Espectroscopía de Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Creatina/metabolismo , Modelos Lineales
20.
Mol Autism ; 14(1): 44, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978557

RESUMEN

INTRODUCTION: Autism spectrum disorder (ASD) encompasses a heterogeneous group with varied phenotypes and etiologies. Identifying pathogenic subgroups could facilitate targeted treatments. One promising avenue is investigating energy metabolism, as mitochondrial dysfunction has been implicated in a subgroup of ASD. Lactate, an indicator of energy metabolic anomalies, may serve as a potential biomarker for this subgroup. This study aimed to examine cerebral lactate (Lac+) levels in high-functioning adults with ASD, hypothesizing elevated mean Lac+ concentrations in contrast to neurotypical controls (NTCs). MATERIALS AND METHODS: Magnetic resonance spectroscopy (MRS) was used to study cerebral Lac+ in 71 adults with ASD and NTC, focusing on the posterior cingulate cortex (PCC). After quality control, 64 ASD and 58 NTC participants remained. Lac+ levels two standard deviations above the mean of the control group were considered elevated. RESULTS: Mean PCC Lac+ levels were significantly higher in the ASD group than in the NTC group (p = 0.028; Cohen's d = 0.404), and 9.4% of the ASD group had elevated levels as compared to 0% of the NTCs (p = 0.029). No significant correlation was found between blood serum lactate levels and MRS-derived Lac+ levels. LIMITATIONS: A cautious interpretation of our results is warranted due to a p value of 0.028. In addition, a higher than anticipated proportion of data sets had to be excluded due to poor spectral quality. CONCLUSION: This study confirms the presence of elevated cerebral Lac+ levels in a subgroup of adults with ASD, suggesting the potential of lactate as a biomarker for mitochondrial dysfunction in a subgroup of ASD. The lower-than-expected prevalence (20% was expected) and moderate increase require further investigation to elucidate the underlying mechanisms and relationships with mitochondrial function.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Adulto , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Ácido Láctico/metabolismo , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...