Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 10(4): e0123413, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25837592

RESUMEN

The twin-arginine translocation (Tat) system transports folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of plant chloroplasts. Escherichia coli and other Gram-negative bacteria possess a TatABC-type Tat translocase in which each of the three inner membrane proteins TatA, TatB, and TatC performs a mechanistically distinct function. In contrast, low-GC Gram-positive bacteria, such as Bacillus subtilis, use a TatAC-type minimal Tat translocase in which the TatB function is carried out by a bifunctional TatA. In high-GC Gram-positive Actinobacteria, such as Mycobacterium tuberculosis and Corynebacterium glutamicum, tatA, tatB, and tatC genes can be identified, suggesting that these organisms, just like E. coli, might use TatABC-type Tat translocases as well. However, since contrary to this view a previous study has suggested that C. glutamicum might in fact use a TatAC translocase with TatB only playing a minor role, we reexamined the requirement of TatB for Tat-dependent protein translocation in this microorganism. Under aerobic conditions, the misassembly of the Rieske iron-sulfur protein QcrA was identified as a major reason for the severe growth defect of Tat-defective C. glutamicum mutant strains. Furthermore, our results clearly show that TatB, besides TatA and TatC, is strictly required for unimpaired aerobic growth. In addition, TatB was also found to be essential for the secretion of a heterologous Tat-dependent model protein into the C. glutamicum culture supernatant. Together with our finding that expression of the C. glutamicum TatB in an E. coli ΔtatB mutant strain resulted in the formation of an active Tat translocase, our results clearly indicate that a TatABC translocase is used as the physiologically relevant functional unit for Tat-dependent protein translocation in C. glutamicum and, most likely, also in other TatB-containing Actinobacteria.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Proteínas de Transporte de Membrana/genética , Sistema de Translocación de Arginina Gemela/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Membrana Celular/metabolismo , Corynebacterium glutamicum/crecimiento & desarrollo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Hierro-Azufre/biosíntesis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Pliegue de Proteína , Transporte de Proteínas/fisiología , Sistema de Translocación de Arginina Gemela/genética
2.
Microb Biotechnol ; 6(2): 202-6, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23163932

RESUMEN

Carbohydrate oxidases are biotechnologically interesting enzymes that require a tightly or covalently bound cofactor for activity. Using the industrial workhorse Corynebacterium glutamicum as the expression host, successful secretion of a normally cytosolic FAD cofactor-containing sorbitol-xylitol oxidase from Streptomyces coelicolor was achieved by using the twin-arginine translocation (Tat) protein export machinery for protein translocation across the cytoplasmic membrane. Our results demonstrate for the first time that, also for cofactor-containing proteins, a secretory production strategy is a feasible and promising alternative to conventional intracellular expression strategies.


Asunto(s)
Biotecnología/métodos , Corynebacterium glutamicum/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oxidorreductasas/metabolismo , Streptomyces coelicolor/enzimología , Xilitol/metabolismo , Citosol/enzimología , Proteínas de Transporte de Membrana/genética , Ingeniería Metabólica/métodos , Transporte de Proteínas
3.
Proc Natl Acad Sci U S A ; 109(19): 7451-6, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22517742

RESUMEN

Reversible protein phosphorylation is an important and ubiquitous protein modification in all living cells. Here we report that protein phosphorylation on arginine residues plays a physiologically significant role. We detected 121 arginine phosphorylation sites in 87 proteins in the gram-positive model organism Bacillus subtilis in vivo. Moreover, we provide evidence that protein arginine phosphorylation has a functional role and is involved in the regulation of many critical cellular processes, such as protein degradation, motility, competence, and stringent and stress responses. Our results suggest that in B. subtilis the combined activity of a protein arginine kinase and phosphatase allows a rapid and reversible regulation of protein activity and that protein arginine phosphorylation can play a physiologically important and regulatory role in bacteria.


Asunto(s)
Arginina/metabolismo , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Secuencia de Aminoácidos , Arginina/genética , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Sitios de Unión/genética , Electroforesis en Gel de Poliacrilamida , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Espectrometría de Masas , Fosfopéptidos/metabolismo , Fosforilación/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA