RESUMEN
Recurrence is the primary life-threatening complication for medulloblastoma (MB). In Sonic Hedgehog (SHH)-subgroup MB, OLIG2-expressing tumor stem cells drive recurrence. We investigated the anti-tumor potential of the small-molecule OLIG2 inhibitor CT-179, using SHH-MB patient-derived organoids, patient-derived xenograft (PDX) tumors and mice genetically-engineered to develop SHH-MB. CT-179 disrupted OLIG2 dimerization, DNA binding and phosphorylation and altered tumor cell cycle kinetics in vitro and in vivo, increasing differentiation and apoptosis. CT-179 increased survival time in GEMM and PDX models of SHH-MB, and potentiated radiotherapy in both organoid and mouse models, delaying post-radiation recurrence. Single cell transcriptomic studies (scRNA-seq) confirmed that CT-179 increased differentiation and showed that tumors up-regulated Cdk4 post-treatment. Consistent with increased CDK4 mediating CT-179 resistance, CT-179 combined with CDK4/6 inhibitor palbociclib delayed recurrence compared to either single-agent. These data show that targeting treatment-resistant MB stem cell populations by adding the OLIG2 inhibitor CT-179 to initial MB treatment can reduce recurrence.
RESUMEN
Lentiviral vectors are unique and highly efficient genetic tools to incorporate genetic materials into the genome of a variety of cells whilst conserving biosafety. Their rapid acceptance made it necessary to improve existing protocols, including molecular engineering and cloning, production of purified lentiviral particles, and efficient infection of target cells. In addition to traditional protocols, which can be time-consuming, several biotechnology companies are providing scientists with commercially available lentiviral constructs and particles. However, these constructs are limited by their original form, tend to be costly, and lack the flexibility to re-engineer based on the ever-changing needs of scientific projects. Therefore, the current study organizes the existing methods and integrates them with novel ideas to establish a protocol that is simple and efficient to implement. In this study we, (i) generated an innovative site-directed nucleotide attachment/replacement and DNA insertion method using unique PCR primers, (ii) improved traditional methods by integrating plasmid clarification steps, (iii) utilized endogenous mRNA as a resource to construct new lentiviruses, and (iv) identified an existing purification method and incorporated it into an organized workflow to produce high-yield lentiviral particle collection. Finally, (v) we verified and demonstrated the functional validity of our methods using an infection strategy.
RESUMEN
Glioblastoma (GBM) is a treatment-refractory central nervous system (CNS) tumour, and better therapies to treat this aggressive disease are urgently needed. Primary GBM models that represent the true disease state are essential to better understand disease biology and for accurate preclinical therapy assessment. We have previously presented a comprehensive transcriptome characterisation of a panel (n = 12) of primary GBM models (Q-Cell). We have now generated a systematic, quantitative, and deep proteome abundance atlas of the Q-Cell models grown in 3D culture, representing 6167 human proteins. A recent study has highlighted the degree of functional heterogeneity that coexists within individual GBM tumours, describing four cellular states (MES-like, NPC-like, OPC-like and AC-like). We performed comparative proteomic analysis, confirming a good representation of each of the four cell-states across the 13 models examined. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified upregulation of a number of GBM-associated cancer pathway proteins. Bioinformatics analysis, using the OncoKB database, identified a number of functional actionable targets that were either uniquely or ubiquitously expressed across the panel. This study provides an in-depth proteomic analysis of the GBM Q-Cell resource, which should prove a valuable functional dataset for future biological and preclinical investigations.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Glioblastoma/metabolismo , Glioblastoma/patología , Proteómica , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Glioblastoma/genética , Humanos , Proteínas de Neoplasias/metabolismo , Proteoma/metabolismoRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
BACKGROUND: Despite significant endeavor having been applied to identify effective therapies to treat glioblastoma (GBM), survival outcomes remain intractable. The greatest nonsurgical benefit arises from radiotherapy, though tumors typically recur due to robust DNA repair. Patients could therefore benefit from therapies with the potential to prevent DNA repair and synergize with radiotherapy. In this work, we investigated the potential of salinomycin to enhance radiotherapy and further uncover novel dual functions of this ionophore to induce DNA damage and prevent repair. METHODS: In vitro primary GBM models and ex vivo GBM patient explants were used to determine the mechanism of action of salinomycin by immunoblot, flow cytometry, immunofluorescence, immunohistochemistry, and mass spectrometry. In vivo efficacy studies were performed using orthotopic GBM animal xenograft models. Salinomycin derivatives were synthesized to increase drug efficacy and explore structure-activity relationships. RESULTS: Here we report novel dual functions of salinomycin. Salinomycin induces toxic DNA lesions and prevents subsequent recovery by targeting homologous recombination (HR) repair. Salinomycin appears to target the more radioresistant GBM stem cell-like population and synergizes with radiotherapy to significantly delay tumor formation in vivo. We further developed salinomycin derivatives which display greater efficacy in vivo while retaining the same beneficial mechanisms of action. CONCLUSION: Our findings highlight the potential of salinomycin to induce DNA lesions and inhibit HR to greatly enhance the effect of radiotherapy. Importantly, first-generation salinomycin derivatives display greater efficacy and may pave the way for clinical testing of these agents.
Asunto(s)
Neoplasias Encefálicas/patología , Replicación del ADN/efectos de los fármacos , Glioblastoma/patología , Piranos/farmacología , Reparación del ADN por Recombinación/efectos de los fármacos , Animales , Autofagia/efectos de los fármacos , Descubrimiento de Drogas , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Glioblastomas (GBMs) are malignant central nervous system (CNS) neoplasms with a very poor prognosis. They display cellular hierarchies containing self-renewing tumourigenic glioma stem cells (GSCs) in a complex heterogeneous microenvironment. One proposed GSC niche is the extracellular matrix (ECM)-rich perivascular bed of the tumour. Here, we report that the ECM binding dystroglycan (DG) receptor is expressed and functionally glycosylated on GSCs residing in the perivascular niche. Glycosylated αDG is highly expressed and functional on the most aggressive mesenchymal-like (MES-like) GBM tumour compartment. Furthermore, we found that DG acts to maintain an MES-like state via tight control of MAPK activation. Antibody-based blockade of αDG induces robust ERK-mediated differentiation leading to reduced GSC potential. DG was shown to be required for tumour initiation in MES-like GBM, with constitutive loss significantly delaying or preventing tumourigenic potential in-vivo. These findings reveal a central role of the DG receptor, not only as a structural element, but also as a critical factor promoting MES-like GBM and the maintenance of GSCs residing in the perivascular niche.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Distroglicanos/metabolismo , Glioma/metabolismo , Células Madre Neoplásicas/metabolismo , Microambiente Tumoral/fisiología , Animales , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/cirugía , Transformación Celular Neoplásica , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Glioma/irrigación sanguínea , Glioma/cirugía , Humanos , Ratones Endogámicos NOD , Ratones SCID , Trasplante de NeoplasiasRESUMEN
Low-passage, serum-free cell lines cultured from patient tumour tissue are the gold-standard for preclinical studies and cellular investigations of glioblastoma (GBM) biology, yet entrenched, poorly-representative cell line models are still widely used, compromising the significance of much GBM research. We submit that greater adoption of these critical resources will be promoted by the provision of a suitably-sized, meaningfully-described reference collection along with appropriate tools for working with them. Consequently, we present a curated panel of 12 readily-usable, genetically-diverse, tumourigenic, patient-derived, low-passage, serum-free cell lines representing the spectrum of molecular subtypes of IDH-wildtype GBM along with their detailed phenotypic characterisation plus a bespoke set of lentiviral plasmids for bioluminescent/fluorescent labelling, gene expression and CRISPR/Cas9-mediated gene inactivation. The cell lines and all accompanying data are readily-accessible via a single website, Q-Cell (qimrberghofer.edu.au/q-cell/) and all plasmids are available from Addgene. These resources should prove valuable to investigators seeking readily-usable, well-characterised, clinically-relevant, gold-standard models of GBM.
Asunto(s)
Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/patología , Trasplante de Neoplasias , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana EdadRESUMEN
The EphA3 receptor has recently emerged as a functional tumour-specific therapeutic target in glioblastoma (GBM). EphA3 is significantly elevated in recurrent disease, is most highly expressed on glioma stem cells (GSCs), and has a functional role in maintaining self-renewal and tumourigenesis. An unlabelled EphA3-targeting therapeutic antibody is currently under clinical assessment in recurrent GBM patients. In this study, we assessed the efficacy of EphA3 antibody drug conjugate (ADC) and radioimmunotherapy (RIT) approaches using orthotopic animal xenograft models. Brain uptake studies, using positron emission tomography/computed tomography (PET/CT) imaging, show EphA3 antibodies are effectively delivered across the blood-tumour barrier and accumulate at the tumour site with no observed normal brain reactivity. A robust anti-tumour response, with no toxicity, was observed using EphA3, ADC, and RIT approaches, leading to a significant increase in overall survival. Our current research provides evidence that GBM patients may benefit from pay-loaded EphA3 antibody therapies.
RESUMEN
Glioblastoma (GBM) is a highly fatal disease with a 5 year survival rate of less than 22%. One of the most effective treatment regimens to date is the use of radiotherapy which induces lethal DNA double-strand breaks to prevent tumour growth. However, recurrence occurs in the majority of patients and is in-part a result of robust radioresistance mechanisms. In this study, we demonstrate that the multifunctional cytokine, interleukin-6 (IL-6), confers a growth advantage in GBM cells but does not have the same effect on normal neural progenitor cells. Further analysis showed IL-6 can promote radioresistance in GBM cells when exposed to ionising radiation. Ablation of the Ataxia-telangiectasia mutated serine/threonine kinase that is recruited and activated by DNA double-strand breaks reverses the effect of radioresistance and re-sensitised GBM to DNA damage thus leading to increase cell death. Our finding suggests targeting the signaling cascade of DNA damage response is a potential therapeutic approach to circumvent IL-6 from promoting radioresistance in GBM.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proliferación Celular/efectos de la radiación , Neoplasias del Sistema Nervioso Central/radioterapia , Glioblastoma/radioterapia , Interleucina-6/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Muerte Celular/fisiología , Muerte Celular/efectos de la radiación , Línea Celular , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Supervivencia Celular/efectos de la radiación , Neoplasias del Sistema Nervioso Central/metabolismo , Daño del ADN/efectos de la radiación , Glioblastoma/metabolismo , Humanos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/efectos de la radiación , ARN Mensajero/metabolismo , Tolerancia a Radiación/fisiología , Radiación Ionizante , Receptores de Interleucina-6/metabolismoRESUMEN
The Eph genes are the largest sub-family of receptor tyrosine kinases; however, it is most likely the least understood and the arena for many conflicting reports. In this tribute to Prof. Martin Lackmann and Prof. Tony Pawson, we utilized The Cancer Genome Atlas resources to shed new light on the understanding of this family. We found that mutation and expression analysis define two clusters of co-expressed Eph family genes that relate to aggressive phenotypes across multiple cancer types. Analysis of signal transduction pathways using reverse-phase protein arrays revealed a network of interactions, which associates cluster-specific Eph genes with epithelial-mesenchymal transition, metabolism, DNA-damage repair and apoptosis. Our findings support the role of the Eph family in modulating cancer progression and reveal distinct patterns of Eph expression, which correlate with disease outcome. These observations provide further rationale for seeking cancer therapies, which target the Eph/ephrin system.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias/diagnóstico , Receptores de la Familia Eph/metabolismo , Animales , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Receptores de la Familia Eph/genéticaRESUMEN
Significant endeavor has been applied to identify functional therapeutic targets in glioblastoma (GBM) to halt the growth of this aggressive cancer. We show that the receptor tyrosine kinase EphA3 is frequently overexpressed in GBM and, in particular, in the most aggressive mesenchymal subtype. Importantly, EphA3 is highly expressed on the tumor-initiating cell population in glioma and appears critically involved in maintaining tumor cells in a less differentiated state by modulating mitogen-activated protein kinase signaling. EphA3 knockdown or depletion of EphA3-positive tumor cells reduced tumorigenic potential to a degree comparable to treatment with a therapeutic radiolabelled EphA3-specific monoclonal antibody. These results identify EphA3 as a functional, targetable receptor in GBM.
Asunto(s)
Neoplasias Encefálicas/prevención & control , Glioblastoma/prevención & control , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células Madre Neoplásicas/patología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Apoptosis , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Diferenciación Celular , Proliferación Celular , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Glioblastoma/genética , Glioblastoma/patología , Humanos , Inmunoprecipitación , Ratones , Ratones Endogámicos NOD , Ratones SCID , ARN Interferente Pequeño/genética , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Receptor EphA3 , Células Tumorales CultivadasRESUMEN
Flightless (Flii) is upregulated in response to wounding and has been shown to function in wound closure and scarring. In macrophages intracellular Flii negatively modulates Toll-Like Receptor (TLR) signalling and dampens cytokine production. We now show that Flii is constitutively secreted from macrophages and fibroblasts and is present in human plasma. Secretion from fibroblasts is upregulated in response to scratch wounding and lipopolysaccharide (LPS)-activated macrophages also temporally upregulate their secretion of Flii. Using siRNA, and wild-type and mutant proteins, we show that Flii is secreted by means of a late endosomal/lysosomal pathway that is regulated by Rab7 and Stx11. Flii contains 11 leucine-rich repeat domains in its N-terminus that have nearly 50% similarity to those in the extracellular pathogen binding portion of Toll-like receptor 4 (TLR4). We show secreted Flii can also bind LPS and has the ability to alter macrophage activation. LPS activation of macrophages in Flii-depleted conditioned medium leads to enhanced macrophage activation and increased TNF secretion compared with cells activated in the presence of Flii. These results show secreted Flii binds to LPS and in doing so alters macrophage activation and cytokine secretion, suggesting that like the intracellular pool of Flii, secreted Flii also has the ability to alter inflammation.
Asunto(s)
Citocinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endosomas/metabolismo , Lipopolisacáridos/metabolismo , Lisosomas/metabolismo , Proteínas de Microfilamentos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Proteínas Portadoras , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Activación de Macrófagos , Fusión de Membrana , Ratones , Células 3T3 NIH , Unión Proteica , Transporte de Proteínas , Proteínas Qa-SNARE/metabolismo , Piel/metabolismo , Transactivadores , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7RESUMEN
Intracellular Flightless I (Flii), a gelsolin family member, has been found to have roles modulating actin regulation, transcriptional regulation and inflammation. In vivo Flii can regulate wound healing responses. We have recently shown that a pool of Flii is secreted by fibroblasts and macrophages, cells typically found in wounds, and its secretion can be upregulated upon wounding. We show that secreted Flii can bind to the bacterial cell wall component lipopolysaccharide and has the potential to regulate inflammation. We now show that secreted Flii is present in both acute and chronic wound fluid.
RESUMEN
The ability of cells to adhere, spread and migrate is essential to many physiological processes, particularly in the immune system where cells must traffic to sites of inflammation and injury. By altering the levels of individual components of the VAMP3/Stx4/SNAP23 complex we show here that this SNARE complex regulates efficient macrophage adhesion, spreading and migration on fibronectin. During cell spreading this complex mediates the polarised exocytosis of VAMP3-positive recycling endosome membrane into areas of membrane expansion, where VAMP3's surface partner Q-SNARE complex Stx4/SNAP23 was found to accumulate. Lowering the levels of VAMP3 in spreading cells resulted in a more rounded cell morphology and most cells were found to be devoid of the typical ring-like podosome superstructures seen normally in spreading cells. In migrating cells lowering VAMP3 levels disrupted the polarised localisation of podosome clusters. The reduced trafficking of recycling endosome membrane to sites of cell spreading and the disorganised podosome localisation in migrating macrophages greatly reduced their ability to persistently migrate on fibronectin. Thus, this important SNARE complex facilitates macrophage adhesion, spreading, and persistent macrophage migration on fibronectin through the delivery of VAMP3-positive membrane with its cargo to expand the plasma membrane and to participate in organising adhesive podosome structures.
Asunto(s)
Movimiento Celular , Forma de la Célula , Macrófagos/citología , Macrófagos/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteína 3 de Membrana Asociada a Vesículas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Adhesión Celular , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Cell migration is a highly complex process that requires the extension of cell membrane in the direction of travel. This membrane is continuously remodeled to expand the leading edge and alter its membrane properties. For a long time it has been known that there is a continual flow of polarized membrane traffic towards the leading edge during migration and that this trafficking is essential for cell migration. However, there is little information on how the cell coordinates exocytosis at the leading edge. It is also unclear whether these internal membranes are incorporated into the leading edge or are just delivering the necessary proteins for migration to occur. We have shown that recycling endosome membrane is incorporated into the plasma membrane at the leading edge to expand the membrane and at the same time delivers receptors to the leading edge to mediate migration. In order for this to happen the surface Q-SNARE complex Stx4/SNAP23 translocates to the leading edge where it binds to the R-SNARE VAMP3 on the recycling endosome allowing incorporation into the plasma membrane. Loss of any one of the components of this complex reduces efficient lamellipodia formation and restrains cell migration.
RESUMEN
Syntaxin 11 (Stx11) is a SNARE protein enriched in cells of the immune system. Loss or mutation of Stx11 results in familial hemophagocytic lymphohistiocytosis type-4 (FHL-4), an autosomal recessive disorder of immune dysregulation characterized by high levels of inflammatory cytokines along with defects in T-cell and natural killer cell function. We show here Stx11 is located on endosomal membranes including late endosomes and lysosomes in macrophages. While Stx11 did not form a typical trans-SNARE complex, it did bind to the Q-SNARE Vti1b and was able to regulate the availability of Vti1b to form the Q-SNARE complexes Stx6/Stx7/Vtib and Stx7/Stx8/Vti1b. The mutant form of Stx11 sequestered Vti1b from forming the Q-SNARE complex that mediates late endosome to lysosome fusion. Depletion of Stx11 in activated macrophages leads to an accumulation of enlarged late endocytic compartments, increased trafficking to the cell surface and inhibition of late endosome to lysosome fusion. These phenotypes are rescued by the expression of an siRNA-resistant Stx11 construct in Stx11-depleted cells. Our results suggest that by regulating the availability of Vti1b, Stx11 regulates trafficking steps between late endosomes, lysosomes and the cell surface in macrophages.
Asunto(s)
Endosomas/metabolismo , Lisosomas/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Animales , Línea Celular , Endosomas/ultraestructura , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Unión Proteica , Proteínas Qa-SNARE/genética , Proteínas Qb-SNARE/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismoRESUMEN
In comparison to our knowledge of the recycling of adhesion receptors and actin assembly, exactly how the cell controls its surface membrane to form a lamellipodium during migration is poorly understood. Here, we show the recycling endosome membrane is incorporated into the leading edge of a migrating cell to expand lamellipodia membrane. We have identified the SNARE complex that is necessary for fusion of the recycling endosome with the cell surface, as consisting of the R-SNARE VAMP3 on the recycling endosome partnering with the surface Q-SNARE Stx4/SNAP23, which was found to translocate and accumulate on the leading edge of migrating cells. Increasing VAMP3-mediated fusion of the recycling endosome with the surface increased membrane ruffling, while inhibition of VAMP3-mediated fusion showed that incorporation of the recycling endosome is necessary for efficient lamellipodia formation. At the same time, insertion of this recycling endosome membrane also delivers its cargo integrin α5ß1 to the cell surface. The loss of this extra membrane for lamellipodia expansion and delivery of cargo in cells resulted in macrophages with a diminished capacity to effectively migrate. Thus, the recycling endosome membrane is incorporated into the leading edge and this aids expansion of the lamellipodia and simultaneously delivers integrins necessary for efficient cell migration.
Asunto(s)
Movimiento Celular , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Macrófagos/metabolismo , Fusión de Membrana , Seudópodos/metabolismo , Animales , Línea Celular , Integrina alfa5beta1/metabolismo , Ratones , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteína 3 de Membrana Asociada a Vesículas/metabolismoRESUMEN
NK cells are renowned for their ability to kill virally infected or transformed host cells by release of cytotoxic granules containing granzymes and perforin. NK cells also have important regulatory capabilities chiefly mediated by secretion of cytokines, such as IFN-gamma and TNF. The secretory pathway for the release of cytokines in NK cells is unknown. In this study, we show localization and trafficking of IFN-gamma and TNF in human NK cells in compartments and vesicles that do not overlap with perforin or other late endosome granule markers. Cytokines in post-Golgi compartments colocalized with markers of the recycling endosome (RE). REs are functionally required for cytokine release because inactivation of REs or mutation of RE-associated proteins Rab11 and vesicle-associated membrane protein-3 blocked cytokine surface delivery and release. In contrast, REs are not needed for release of perforin from preformed granules but may be involved at earlier stages of granule maturation. These findings suggest a new role for REs in orchestrating secretion in NK cells. We show that the cytokines IFN-gamma and TNF are trafficked and secreted via a different pathway than perforin. Although perforin granules are released in a polarized fashion at lytic synapses, distinct carriers transport both IFN-gamma and TNF to points all over the cell surface, including within the synapse, for nonpolarized release.
Asunto(s)
Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/metabolismo , Pruebas Inmunológicas de Citotoxicidad , Interferón gamma/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Perforina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Compartimento Celular/inmunología , Membrana Celular/inmunología , Membrana Celular/metabolismo , Polaridad Celular/inmunología , Células Cultivadas , Pruebas Inmunológicas de Citotoxicidad/métodos , Endosomas/inmunología , Endosomas/metabolismo , Humanos , Sinapsis Inmunológicas/metabolismo , Interferón gamma/biosíntesis , Células K562 , Activación de Linfocitos/inmunología , Perforina/biosíntesis , Transporte de Proteínas/inmunología , Vesículas Secretoras/inmunología , Vesículas Secretoras/metabolismo , Transducción de Señal/inmunología , Factor de Necrosis Tumoral alfa/biosíntesisRESUMEN
Cytokines and other immune mediators are secreted by cells of the immune system during immune responses and as a means of communication. While the functions of these cytokines, chemokines and mediators are well known, the intracellular pathways that lead to their secretion by different cells are only now being fully documented. Cytokines in some cells are released from secretory granules while in other cells they are released via constitutive secretory pathways that instead have more dynamic vesicular carriers. Recent studies have revealed that newly synthesized cytokines can be routed via compartments such as recycling endosomes prior to their secretion. Here we describe and show examples of some of the pathways used for cytokine trafficking and release in macrophages, including some of the cellular machinery required for this transport. Increasingly, these trafficking pathways are revealed as having important regulatory roles in the execution of immune responses.