Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 69, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509618

RESUMEN

Microglial Na/H exchanger-1 (NHE1) protein, encoded by Slc9a1, plays a role in white matter demyelination of ischemic stroke brains. To explore underlying mechanisms, we conducted single cell RNA-seq transcriptome analysis in conditional Slc9a1 knockout (cKO) and wild-type (WT) mouse white matter tissues at 3 days post-stroke. Compared to WT, Nhe1 cKO brains expanded a microglial subgroup with elevated transcription of white matter myelination genes including Spp1, Lgals3, Gpnmb, and Fabp5. This subgroup also exhibited more acidic pHi and significantly upregulated CREB signaling detected by ingenuity pathway analysis and flow cytometry. Moreover, the Nhe1 cKO white matter tissues showed enrichment of a corresponding oligodendrocyte subgroup, with pro-phagocytosis and lactate shuffling gene expression, where activated CREB signaling is a likely upstream regulator. These findings demonstrate that attenuation of NHE1-mediated H+ extrusion acidifies microglia/macrophage and may underlie the stimulation of CREB1 signaling, giving rise to restorative microglia-oligodendrocyte interactions for remyelination.


Asunto(s)
Encéfalo , Microglía , Intercambiador 1 de Sodio-Hidrógeno , Animales , Ratones , Encéfalo/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal/genética , Intercambiador 1 de Sodio-Hidrógeno/metabolismo
2.
NPJ Regen Med ; 9(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167866

RESUMEN

Regulation of myeloid cell activity is critical for successful myelin regeneration (remyelination) in demyelinating diseases, such as multiple sclerosis (MS). Here, we show aromatic alpha-keto acids (AKAs) generated from the amino acid oxidase, interleukin-4 induced 1 (IL4I1), promote efficient remyelination in mouse models of MS. During remyelination, myeloid cells upregulated the expression of IL4I1. Conditionally knocking out IL4I1 in myeloid cells impaired remyelination efficiency. Mice lacking IL4I1 expression exhibited a reduction in the AKAs, phenylpyruvate, indole-3-pyruvate, and 4-hydroxyphenylpyruvate, in remyelinating lesions. Decreased AKA levels were also observed in people with MS, particularly in the progressive phase when remyelination is impaired. Oral administration of AKAs modulated myeloid cell-associated inflammation, promoted oligodendrocyte maturation, and enhanced remyelination in mice with focal demyelinated lesions. Transcriptomic analysis revealed AKA treatment induced a shift in metabolic pathways in myeloid cells and upregulated aryl hydrocarbon receptor activity in lesions. Our results suggest myeloid cell-associated aromatic amino acid metabolism via IL4I1 produces AKAs in demyelinated lesions to enable efficient remyelination. Increasing AKA levels or targeting related pathways may serve as a strategy to facilitate the regeneration of myelin in inflammatory demyelinating conditions.

3.
Neurochem Int ; 162: 105441, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375633

RESUMEN

SPAK inhibitor ZT-1a was previously shown to be neuroprotective in murine ischemic stroke models. In this study, we further examined the efficacy of four ZT-1a derivatives (ZT-1c, -1d, -1g and -1h) on reducing stroke-induced sensorimotor function impairment and brain lesions. Vehicle control (Veh) or ZT-1 derivatives were administered via osmotic pump to adult C57BL/6J mice during 3-21 h post-stroke. Neurological behavior of these mice was assessed at days 1, 3, 5, and 7 post-stroke and MRI T2WI and DTI analysis was subsequently conducted in ex vivo brains. Veh-treated stroke mice displayed sensorimotor function deficits compared to Sham mice. In contrast, mice receiving ZT-1a derivatives displayed significantly lower neurological deficits at days 3-7 post-stroke (p < 0.05), with ZT-1a, ZT-1c and ZT-1d showing greater impact than ZT-1h and ZT-1g. ZT-1a treatment was the most effective in reducing brain lesion volume on T2WI and in preserving NeuN + neurons (p < 0.01), followed by ZT-1d > -1c > -1g > -1h. The Veh-treated stroke mice displayed white matter tissue injury, reflected by reduced fractional anisotropy (FA) or axial diffusivity (AD) values in external capsule, internal capsule and hippocampus. In contrast, only ZT-1a-as well as ZT-1c-treated stroke mice exhibited significantly higher FA and AD values. These findings demonstrate that post-stroke administration of SPAK inhibitor ZT-1a and its derivatives (ZT-1c and ZT-1d) is effective in protecting gray and white matter tissues in ischemic brains, showing a potential for ischemic stroke therapy development.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular Isquémico , Enfermedades del Sistema Nervioso , Accidente Cerebrovascular , Sustancia Blanca , Ratones , Animales , Ratones Endogámicos C57BL , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/patología , Encéfalo , Enfermedades del Sistema Nervioso/patología , Sustancia Blanca/patología , Lesiones Encefálicas/patología , Accidente Cerebrovascular Isquémico/patología
4.
J Neuroinflammation ; 19(1): 246, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199097

RESUMEN

Differential microglial inflammatory responses play a role in regulation of differentiation and maturation of oligodendrocytes (OLs) in brain white matter. How microglia-OL crosstalk is altered by traumatic brain injury (TBI) and its impact on axonal myelination and neurological function impairment remain poorly understood. In this study, we investigated roles of a Na+/H+ exchanger (NHE1), an essential microglial pH regulatory protein, in microglial proinflammatory activation and OL survival and differentiation in a murine TBI model induced by controlled cortical impact. Similar TBI-induced contusion volumes were detected in the Cx3cr1-CreERT2 control (Ctrl) mice and selective microglial Nhe1 knockout (Cx3cr1-CreERT2;Nhe1flox/flox, Nhe1 cKO) mice. Compared to the Ctrl mice, the Nhe1 cKO mice displayed increased resistance to initial TBI-induced white matter damage and accelerated chronic phase of OL regeneration at 30 days post-TBI. The cKO brains presented increased anti-inflammatory phenotypes of microglia and infiltrated myeloid cells, with reduced proinflammatory transcriptome profiles. Moreover, the cKO mice exhibited accelerated post-TBI sensorimotor and cognitive functional recovery than the Ctrl mice. These phenotypic outcomes in cKO mice were recapitulated in C57BL6J wild-type TBI mice receiving treatment of a potent NHE1 inhibitor HOE642 for 1-7 days post-TBI. Taken together, these findings collectively demonstrated that blocking NHE1 protein stimulates restorative microglial activation in oligodendrogenesis and neuroprotection, which contributes to accelerated brain repair and neurological function recovery after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Sustancia Blanca , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Oligodendroglía , Recuperación de la Función
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA