Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38806056

RESUMEN

A recent marine metagenomic study has revealed the existence of a novel group of viruses designated mirusviruses, which are proposed to form an evolutionary link between two realms of double-stranded DNA viruses, Varidnaviria and Duplodnaviria. Metagenomic data suggest that mirusviruses infect microeukaryotes in the photic layer of the ocean, but their host range remains largely unknown. In this study, we investigated the presence of mirusvirus marker genes in 1,901 publicly available eukaryotic genome assemblies, mainly derived from unicellular eukaryotes, to identify potential hosts of mirusviruses. Mirusvirus marker sequences were identified in 915 assemblies spanning 227 genera across eight supergroups of eukaryotes. The habitats of the putative mirusvirus hosts included not only marine but also other diverse environments. Among the major capsid protein (MCP) signals in the genome assemblies, we identified 85 sequences that showed high sequence and structural similarities to reference mirusvirus MCPs. A phylogenetic analysis of these sequences revealed their distant evolutionary relationships with the seven previously reported mirusvirus clades. Most of the scaffolds with these MCP sequences encoded multiple mirusvirus homologs, suggesting that mirusviral infection contributes to the alteration of the host genome. We also identified three circular mirusviral genomes within the genomic data of the oil-producing thraustochytrid Schizochytrium sp. and the endolithic green alga Ostreobium quekettii. Overall, mirusviruses probably infect a wide spectrum of eukaryotes and are more diverse than previously reported.

2.
Microbes Environ ; 39(1)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38522927

RESUMEN

Parmales (Bolidophyceae) is a minor eukaryotic phytoplankton group, sister to diatoms, which exists as two distinct forms of unicellular organisms: silicified cells and naked flagellates. Since their discovery, many field studies on Parmales have been performed; however, their global distribution has not yet been examined in detail. We herein compiled more than 3,000 marine DNA metabarcoding datasets targeting the V4 region of the 18S rRNA gene from the EukBank database. By linking this large dataset with the latest morphological and genetic information, we provide updated estimates on the diversity and distribution of Parmales in the global ocean at a fine taxonomic resolution. Parmalean amplicon sequence variants (ASVs) were detected in nearly 90% of the samples analyzed. However, the relative abundance of parmaleans in the eukaryotic community was less than 0.2% on average, and the estimated true richness of parmalean ASVs was approximately 316 ASVs, confirming their low abundance and diversity. A phylogenetic ana-lysis divided these algae into four clades, and three known morphotypes of silicified cells were classified into three different clades. The abundance of Parmales is generally high in the poles and decreases towards the tropics, and individual clades/subclades show further distinctions in their distribution. Collectively, the present results suggest clade/subclade-specific adaptation to different ecological niches.


Asunto(s)
Biodiversidad , Diatomeas , Filogenia , Fitoplancton/genética , Diatomeas/genética , Ecosistema
3.
Microbes Environ ; 39(1)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38508742

RESUMEN

With the explosion of available genomic information, comparative genomics has become a central approach to understanding microbial ecology and evolution. We developed DiGAlign (https://www.genome.jp/digalign/), a web server that provides versatile functionality for comparative genomics with an intuitive interface. It allows the user to perform the highly customizable visualization of a synteny map by simply uploading nucleotide sequences of interest, ranging from a specific region to the whole genome landscape of microorganisms and viruses. DiGAlign will serve a wide range of biological researchers, particularly experimental biologists, with multifaceted features that allow the rapid characterization of genomic sequences of interest and the generation of a publication-ready figure.


Asunto(s)
Programas Informáticos , Interfaz Usuario-Computador , Alineación de Secuencia , Genómica , Genoma
4.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38293090

RESUMEN

A recent marine metagenomic study has revealed the existence of a novel group of viruses designated mirusviruses, which are proposed to form an evolutionary link between two realms of double-stranded DNA viruses, Varidnaviria and Duplodnaviria. Metagenomic data suggest that mirusviruses infect microeukaryotes in the photic layer of the ocean, but their host range remains largely unknown. In this study, we investigated the presence of mirusvirus marker genes in publicly available 1,901 eukaryotic genome assemblies, mainly derived from unicellular eukaryotes, to identify potential hosts of mirusviruses. Mirusvirus marker sequences were identified in 1,348 assemblies spanning 284 genera across eight supergroups of eukaryotes. The habitats of the putative mirusvirus hosts included not only marine but also other diverse environments. Among the major capsid protein (MCP) signals in the genome assemblies, we identified 85 sequences that showed high sequence and structural similarities to reference mirusvirus MCPs. A phylogenetic analysis of these sequences revealed their distant evolutionary relationships with the seven previously reported mirusvirus clades. Most of the scaffolds with these MCP sequences encoded multiple mirusvirus homologs, underscoring the impact of mirusviral infection on the evolution of the host genome. We also identified three circular mirusviral genomes within the genomic data of the oil producing thraustochytrid Schizochytrium sp. and the endolithic green alga Ostreobium quekettii. Overall, mirusviruses probably infect a wide spectrum of eukaryotes and are more diverse than previously reported.

5.
Virus Evol ; 9(2): vead064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953976

RESUMEN

Most fungal viruses are RNA viruses, and no double-stranded DNA virus that infects fungi is known to date. A recent study detected DNA polymerase genes that originated from large dsDNA viruses in the genomes of basal fungi, suggestive of the existence of dsDNA viruses capable of infecting fungi. In this study, we searched for viral infection signatures in chromosome-level genome assemblies of the arbuscular mycorrhizal fungus Rhizophagus irregularis. We identified a continuous 1.5-Mb putative viral region on a chromosome in R. irregularis strain 4401. Phylogenetic analyses revealed that the viral region is related to viruses in the family Asfarviridae of the phylum Nucleocytoviricota. This viral region was absent in the genomes of four other R. irregularis strains and had fewer signals of fungal transposable elements than the other genomic regions, suggesting a recent and single insertion of a large dsDNA viral genome in the genome of this fungal strain. We also incidentally identified viral-like sequences in the genome assembly of the sea slug Elysia marginata that are evolutionally close to the 1.5-Mb putative viral region. In conclusion, our findings provide strong evidence of the recent infection of the fungus by a dsDNA virus.

6.
Arch Virol ; 168(11): 283, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904060

RESUMEN

Large DNA viruses in the phylum Nucleocytoviricota, sometimes referred to as "giant viruses" owing to their large genomes and virions, have been the subject of burgeoning interest over the last decade. Here, we describe recently adopted taxonomic updates for giant viruses within the order Imitervirales. The families Allomimiviridae, Mesomimiviridae, and Schizomimiviridae have been created to accommodate the increasing diversity of mimivirus relatives that have sometimes been referred to in the literature as "extended Mimiviridae". In addition, the subfamilies Aliimimivirinae, Megamimivirinae, and Klosneuvirinae have been established to refer to subgroups of the Mimiviridae. Binomial names have also been adopted for all recognized species in the order. For example, Acanthamoeba polyphaga mimivirus is now classified in the species Mimivirus bradfordmassiliense.


Asunto(s)
Virus Gigantes , Mimiviridae , Humanos , Virus Gigantes/genética , Virus ADN/genética , Mimiviridae/genética , Genoma Viral , Virión
7.
Nat Commun ; 14(1): 6233, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828003

RESUMEN

Despite being perennially frigid, polar oceans form an ecosystem hosting high and unique biodiversity. Various organisms show different adaptive strategies in this habitat, but how viruses adapt to this environment is largely unknown. Viruses of phyla Nucleocytoviricota and Mirusviricota are groups of eukaryote-infecting large and giant DNA viruses with genomes encoding a variety of functions. Here, by leveraging the Global Ocean Eukaryotic Viral database, we investigate the biogeography and functional repertoire of these viruses at a global scale. We first confirm the existence of an ecological barrier that clearly separates polar and nonpolar viral communities, and then demonstrate that temperature drives dramatic changes in the virus-host network at the polar-nonpolar boundary. Ancestral niche reconstruction suggests that adaptation of these viruses to polar conditions has occurred repeatedly over the course of evolution, with polar-adapted viruses in the modern ocean being scattered across their phylogeny. Numerous viral genes are specifically associated with polar adaptation, although most of their homologues are not identified as polar-adaptive genes in eukaryotes. These results suggest that giant viruses adapt to cold environments by changing their functional repertoire, and this viral evolutionary strategy is distinct from the polar adaptation strategy of their hosts.


Asunto(s)
Virus Gigantes , Virus , Virus Gigantes/genética , Genoma Viral/genética , Ecosistema , Océanos y Mares , Filogenia , Virus ADN/genética , Genómica , Virus/genética , Eucariontes/genética
8.
ISME Commun ; 3(1): 101, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37740029

RESUMEN

Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic-subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming.

9.
Environ Microbiol ; 25(11): 2621-2635, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37543720

RESUMEN

Following the discovery of Acanthamoeba polyphaga mimivirus, diverse giant viruses have been isolated. However, only a small fraction of these isolates have been completely sequenced, limiting our understanding of the genomic diversity of giant viruses. MinION is a portable and low-cost long-read sequencer that can be readily used in a laboratory. Although MinION provides highly error-prone reads that require correction through additional short-read sequencing, recent studies assembled high-quality microbial genomes only using MinION sequencing. Here, we evaluated the accuracy of MinION-only genome assemblies for giant viruses by re-sequencing a prototype marseillevirus. Assembled genomes presented over 99.98% identity to the reference genome with a few gaps, demonstrating a high accuracy of the MinION-only assembly. As a proof of concept, we de novo assembled five newly isolated viruses. Average nucleotide identities to their closest known relatives suggest that the isolates represent new species of marseillevirus, pithovirus and mimivirus. The assembly of subsampled reads demonstrated that their taxonomy and genomic composition could be analysed at the 50× sequencing coverage. We also identified a pithovirus gene whose homologues were detected only in metagenome-derived relatives. Collectively, we propose that MinION-only assembly is an effective approach to rapidly perform a genome-wide analysis of isolated giant viruses.


Asunto(s)
Virus Gigantes , Virus Gigantes/genética , Genómica , Análisis de Secuencia de ADN , Metagenoma , Secuenciación de Nucleótidos de Alto Rendimiento
10.
ISME Commun ; 3(1): 83, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596349

RESUMEN

For decades, marine plankton have been investigated for their capacity to modulate biogeochemical cycles and provide fishery resources. Between the sunlit (epipelagic) layer and the deep dark waters, lies a vast and heterogeneous part of the ocean: the mesopelagic zone. How plankton composition is shaped by environment has been well-explored in the epipelagic but much less in the mesopelagic ocean. Here, we conducted comparative analyses of trans-kingdom community assemblages thriving in the mesopelagic oxygen minimum zone (OMZ), mesopelagic oxic, and their epipelagic counterparts. We identified nine distinct types of intermediate water masses that correlate with variation in mesopelagic community composition. Furthermore, oxygen, NO3- and particle flux together appeared as the main drivers governing these communities. Novel taxonomic signatures emerged from OMZ while a global co-occurrence network analysis showed that about 70% of the abundance of mesopelagic plankton groups is organized into three community modules. One module gathers prokaryotes, pico-eukaryotes and Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) from oxic regions, and the two other modules are enriched in OMZ prokaryotes and OMZ pico-eukaryotes, respectively. We hypothesize that OMZ conditions led to a diversification of ecological niches, and thus communities, due to selective pressure from limited resources. Our study further clarifies the interplay between environmental factors in the mesopelagic oxic and OMZ, and the compositional features of communities.

11.
Commun Biol ; 6(1): 697, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420035

RESUMEN

The order Parmales (class Bolidophyceae) is a minor group of pico-sized eukaryotic marine phytoplankton that contains species with cells surrounded by silica plates. Previous studies revealed that Parmales is a member of ochrophytes and sister to diatoms (phylum Bacillariophyta), the most successful phytoplankton group in the modern ocean. Therefore, parmalean genomes can serve as a reference to elucidate both the evolutionary events that differentiated these two lineages and the genomic basis for the ecological success of diatoms vs. the more cryptic lifestyle of parmaleans. Here, we compare the genomes of eight parmaleans and five diatoms to explore their physiological and evolutionary differences. Parmaleans are predicted to be phago-mixotrophs. By contrast, diatoms have lost genes related to phagocytosis, indicating the ecological specialization from phago-mixotrophy to photoautotrophy in their early evolution. Furthermore, diatoms show significant enrichment in gene sets involved in nutrient uptake and metabolism, including iron and silica, in comparison with parmaleans. Overall, our results suggest a strong evolutionary link between the loss of phago-mixotrophy and specialization to a silicified photoautotrophic life stage early in diatom evolution after diverging from the Parmales lineage.


Asunto(s)
Diatomeas , Estramenopilos , Diatomeas/genética , Estramenopilos/genética , Fitoplancton/metabolismo , Genoma , Dióxido de Silicio
12.
Nature ; 616(7958): 783-789, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37076623

RESUMEN

DNA viruses have a major influence on the ecology and evolution of cellular organisms1-4, but their overall diversity and evolutionary trajectories remain elusive5. Here we carried out a phylogeny-guided genome-resolved metagenomic survey of the sunlit oceans and discovered plankton-infecting relatives of herpesviruses that form a putative new phylum dubbed Mirusviricota. The virion morphogenesis module of this large monophyletic clade is typical of viruses from the realm Duplodnaviria6, with multiple components strongly indicating a common ancestry with animal-infecting Herpesvirales. Yet, a substantial fraction of mirusvirus genes, including hallmark transcription machinery genes missing in herpesviruses, are closely related homologues of giant eukaryotic DNA viruses from another viral realm, Varidnaviria. These remarkable chimaeric attributes connecting Mirusviricota to herpesviruses and giant eukaryotic viruses are supported by more than 100 environmental mirusvirus genomes, including a near-complete contiguous genome of 432 kilobases. Moreover, mirusviruses are among the most abundant and active eukaryotic viruses characterized in the sunlit oceans, encoding a diverse array of functions used during the infection of microbial eukaryotes from pole to pole. The prevalence, functional activity, diversification and atypical chimaeric attributes of mirusviruses point to a lasting role of Mirusviricota in the ecology of marine ecosystems and in the evolution of eukaryotic DNA viruses.


Asunto(s)
Organismos Acuáticos , Virus Gigantes , Herpesviridae , Océanos y Mares , Filogenia , Plancton , Animales , Ecosistema , Eucariontes/virología , Genoma Viral/genética , Virus Gigantes/clasificación , Virus Gigantes/genética , Herpesviridae/clasificación , Herpesviridae/genética , Plancton/virología , Metagenómica , Metagenoma , Luz Solar , Transcripción Genética/genética , Organismos Acuáticos/virología
13.
Microbes Environ ; 38(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-36928278

RESUMEN

We herein propose a fast and easy DNA and RNA co-extraction method for environmental microbial samples. It combines bead beating and phenol-chloroform phase separation followed by the separation and purification of DNA and RNA using the Qiagen AllPrep DNA/RNA mini kit. With a handling time of ~3 h, our method simultaneously extracted high-quality DNA (peak size >10-15| |kb) and RNA (RNA integrity number >6) from lake bacterioplankton filtered samples. The method is also applicable to low-biomass samples (expected DNA or RNA yield <50| |ng) and eukaryotic microbial samples, providing an easy option for more versatile eco-genomic applications.


Asunto(s)
ADN , ARN , ARN/genética , ADN/genética , Genómica , Fenol
14.
Arch Virol ; 168(3): 80, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36740641

RESUMEN

Acanthamoeba castellanii medusavirus J1 is a giant virus that was isolated from a hot spring in Japan in 2019. Recently, a close relative of this virus, named medusavirus stheno T3, was isolated in Japan. Here, we describe their morphological, genomic, and gene content similarities and also propose to create a new family, "Mamonoviridae", a new genus, "Medusavirus", and two species, "Medusavirus medusae" and "Medusavirus sthenus", to classify these two viruses within the phylum Nucleocytoviricota.


Asunto(s)
Virus Gigantes , Virus , Filogenia , Genoma Viral , Virus/genética , Virus Gigantes/genética , Genómica
15.
mSystems ; 8(1): e0093122, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36722950

RESUMEN

Viruses infecting marine prokaryotes have a large impact on the diversity and dynamics of their hosts. Model systems suggest that viral infection is frequency dependent and constrained by the virus-host encounter rate. However, it is unclear whether frequency-dependent infection is pervasive among the abundant prokaryotic populations with different temporal dynamics. To address this question, we performed a comparison of prokaryotic and viral communities using 16S rRNA amplicon and virome sequencing based on samples collected monthly for 2 years at a Japanese coastal site, Osaka Bay. Concurrent seasonal shifts observed in prokaryotic and viral community dynamics indicated that the abundance of viruses correlated with that of their predicted host phyla (or classes). Cooccurrence network analysis between abundant prokaryotes and viruses revealed 6,423 cooccurring pairs, suggesting a tight coupling of host and viral abundances and their "one-to-many" correspondence. Although stable dominant species, such as SAR11, showed few cooccurring viruses, a fast succession of their viruses suggests that viruses infecting these populations changed continuously. Our results suggest that frequency-dependent viral infection prevails in coastal marine prokaryotes regardless of host taxa and temporal dynamics. IMPORTANCE There is little room for doubt that viral infection is prevalent among abundant marine prokaryotes regardless of their taxa or growth strategy. However, comprehensive evaluations of viral infections in natural prokaryotic communities are still technically difficult. In this study, we examined viral infection in abundant prokaryotes by monitoring the monthly dynamics of prokaryotic and viral communities at a eutrophic coastal site, Osaka Bay. We compared the community dynamics of viruses with those of their putative hosts based on genome-based in silico host prediction. We observed frequent cooccurrence among the predicted virus-host pairs, suggesting that viral infection is prevalent in abundant prokaryotes regardless of their taxa or temporal dynamics. This likely indicates that frequent lysis of the abundant prokaryotes via viral infection has a considerable contribution to the biogeochemical cycling and maintenance of prokaryotic community diversity.


Asunto(s)
Virosis , Virus , Humanos , ARN Ribosómico 16S/genética , Prevalencia , Factores de Tiempo , Viroma , Virus/genética
16.
Bioinformatics ; 38(23): 5160-5167, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36205602

RESUMEN

MOTIVATION: N4-methylcytosine (4mC) is an essential kind of epigenetic modification that regulates a wide range of biological processes. However, experimental methods for detecting 4mC sites are time-consuming and labor-intensive. As an alternative, computational methods that are capable of automatically identifying 4mC with data analysis techniques become a reasonable option. A major challenge is how to develop effective methods to fully exploit the complex interactions within the DNA sequences to improve the predictive capability. RESULTS: In this work, we propose MSNet-4mC, a lightweight neural network building upon convolutional operations with multi-scale receptive fields to perceive cross-element relationships over both short and long ranges of given DNA sequences. With strong imbalances in the number of candidates in different species in mind, we compute and apply class weights in the cross-entropy loss to balance the training process. Extensive benchmarking experiments show that our method achieves a significant performance improvement and outperforms other state-of-the-art methods. AVAILABILITY AND IMPLEMENTATION: The source code and models are freely available for download at https://github.com/LIU-CT/MSNet-4mC, implemented in Python and supported on Linux and Windows. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
ADN , Programas Informáticos , ADN/genética , Redes Neurales de la Computación , Aprendizaje Automático , Epigénesis Genética
17.
Science ; 376(6598): 1202-1208, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679415

RESUMEN

DNA viruses are increasingly recognized as influencing marine microbes and microbe-mediated biogeochemical cycling. However, little is known about global marine RNA virus diversity, ecology, and ecosystem roles. In this study, we uncover patterns and predictors of marine RNA virus community- and "species"-level diversity and contextualize their ecological impacts from pole to pole. Our analyses revealed four ecological zones, latitudinal and depth diversity patterns, and environmental correlates for RNA viruses. Our findings only partially parallel those of cosampled plankton and show unexpectedly high polar ecological interactions. The influence of RNA viruses on ecosystems appears to be large, as predicted hosts are ecologically important. Moreover, the occurrence of auxiliary metabolic genes indicates that RNA viruses cause reprogramming of diverse host metabolisms, including photosynthesis and carbon cycling, and that RNA virus abundances predict ocean carbon export.


Asunto(s)
Plancton , Virus ARN , Agua de Mar , Viroma , Ciclo del Carbono , Ecosistema , Océanos y Mares , Plancton/clasificación , Plancton/metabolismo , Plancton/virología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , Agua de Mar/virología , Viroma/genética
18.
Am J Intellect Dev Disabil ; 127(3): 249-263, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35443050

RESUMEN

The relationship between sensory processing and ASD-like and associated behaviors in patients with Prader-Willi Syndrome (PWS) remains relatively unexplored. Examining this relationship, 51 adults with PWS were administered the Pervasive Developmental Disorders Autism Society Japan Rating Scale (PARS), Short Sensory Profile (SSP-J), Food-Related Problem Questionnaire (FRPQ), and Aberrant Behavior Checklist (ABC-J). Based on SSP-J z-scores, participants were classified into three severity groups. Analysis of variance was performed to compare the behavioral scores of these three groups. Statistically significant group differences were observed in PARS (p = .006, ηp2 = .194) and ABC-J (p = .006, ηp2 = .193) scores. Our findings suggest that the level of sensory processing may predict ASD-like and aberrant behaviors in adults with PWS, implying the importance of a proper assessment for early intervention.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Síndrome de Prader-Willi , Adulto , Humanos , Percepción , Encuestas y Cuestionarios
19.
Science ; 376(6589): 156-162, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35389782

RESUMEN

Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.


Asunto(s)
Genoma Viral , Virus ARN , Virus , Evolución Biológica , Ecosistema , Océanos y Mares , Filogenia , ARN , Virus ARN/genética , Viroma/genética , Virus/genética
20.
Plant Cell Physiol ; 63(5): 635-648, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35348769

RESUMEN

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is involved in regulating various cellular processes through the signaling function of its product, phosphatidylinositol (4,5)-bisphosphate. Higher plants encode a large number of PIP5Ks forming distinct clades in their molecular phylogenetic tree. Although biological functions of PIP5K genes have been analyzed intensively in Arabidopsis thaliana, it remains unclear how those functions differ across clades of paralogs. We performed comparative functional analysis of the Arabidopsis genes encoding PIP5K1, PIP5K2 and PIP5K3, of which the first two and the last belong to closely related but distinct clades, to clarify their conserved and/or differentiated functions. Genetic analysis with their single and multiple mutants revealed that PIP5K1 and PIP5K3 have non-overlapping functions, with the former in total plant growth and the latter in root hair elongation, whereas PIP5K2 redundantly functions in both phenomena. This pattern of functional redundancy is explainable in terms of the overlapping pattern of their promoter activities. In transformation rescue experiments, PIP5K3 promoter-directed PIP5K1-YFP completely rescued the short-root-hair phenotype of pip5k3. However, PIP5K3-YFP could substitute for PIP5K1-YFP only partially in rescuing the severe dwarfism of pip5k1pip5k2 when directed by the PIP5K1 promoter. Phylogenetic analysis of angiosperm PIP5Ks revealed that PIP5K3 orthologs have a faster rate of diversification in their amino-acid sequences compared with PIP5K1/2 orthologs after they arose through a eudicot-specific duplication event. These findings suggest that PIP5K3 specialized to promote root hair elongation and lost some of the protein-encoded functions retained by PIP5K1 and PIP5K2, whereas PIP5K1 differentiated from PIP5K2 only in its promoter-directed expression pattern.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Filogenia , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA