Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Anal Chem ; 89(22): 12450-12457, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29063767

RESUMEN

Combining the electrophoresis and conventional Coulter methods, we previously proposed the electrophoretic Coulter method (ECM), enabling simultaneous analysis of the size, number, and zeta potential of individual specimens. We validated the ECM experimentally using standard polystyrene particles and red blood cells (RBCs) from sheep; the latter was the first ECM application to biological particles in biotechnology research. However, specimens are prevented from passing through the ECM module aperture, which prevents accurate determination of the zeta potential of each specimen. This problem is caused by electro-osmotic flow (EOF) due to the high zeta potential at the ECM microchannel surfaces. To significantly improve ECM feasibility for biomedicine, we here propose a method to estimate the zeta potential at the ECM microchannel surfaces separate from the zeta potential of each specimen, by investigating the electric-field dependence of the specimen's experimental electrophoretic velocity. We minimize the zeta potential at the microchannel surfaces by applying an organic-molecule coating, and we suppress the surface zeta potential and its resultant EOF by optimizing the microchannel geometry. We demonstrate that the ECM can distinguish between different biological cells using the differences in zeta potential values and/or sizes. We also demonstrate that the ECM can determine the number of biomolecules attached to individual cells and identify whether the average cell state in an analyzed vial is alive or dead. The high-performance ECM can detect cellular morphology alterations, improve immunologic test sensitivity, and identify cell states (living, dying, and dead); this information is clinically useful for early diagnosis and its follow-up.


Asunto(s)
Apoptosis , Células Cultivadas , Electroforesis Capilar/instrumentación , Humanos , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...