Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38672510

RESUMEN

Histone deacetylase (HDAC) 9 is a negative regulator of adipogenic differentiation, which is required for maintenance of healthy adipose tissues. We reported that HDAC9 expression is upregulated in adipose tissues during obesity, in conjunction with impaired adipogenic differentiation, adipocyte hypertrophy, insulin resistance, and hepatic steatosis, all of which were alleviated by global genetic deletion of Hdac9. Here, we developed a novel transgenic (TG) mouse model to test whether overexpression of Hdac9 is sufficient to induce adipocyte hypertrophy, insulin resistance, and hepatic steatosis in the absence of obesity. HDAC9 TG mice gained less body weight than wild-type (WT) mice when fed a standard laboratory diet for up to 40 weeks, which was attributed to reduced fat mass (primarily inguinal adipose tissue). There was no difference in insulin sensitivity or glucose tolerance in 18-week-old WT and HDAC9 TG mice; however, at 40 weeks of age, HDAC9 TG mice exhibited impaired insulin sensitivity and glucose intolerance. Tissue histology demonstrated adipocyte hypertrophy, along with reduced numbers of mature adipocytes and stromovascular cells, in the HDAC9 TG mouse adipose tissue. Moreover, increased lipids were detected in the livers of aging HDAC9 TG mice, as evaluated by oil red O staining. In conclusion, the experimental aging HDAC9 TG mice developed adipocyte hypertrophy, insulin resistance, and hepatic steatosis, independent of obesity. This novel mouse model may be useful in the investigation of the impact of Hdac9 overexpression associated with metabolic and aging-related diseases.


Asunto(s)
Adipocitos , Hígado Graso , Histona Desacetilasas , Resistencia a la Insulina , Animales , Ratones , Adipocitos/metabolismo , Adipocitos/patología , Envejecimiento/genética , Envejecimiento/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Hipertrofia/genética , Hipertrofia/metabolismo , Resistencia a la Insulina/genética , Ratones Transgénicos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
2.
Obesity (Silver Spring) ; 32(1): 107-119, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37869960

RESUMEN

OBJECTIVE: Impaired adipogenic differentiation exacerbates metabolic disease in obesity. This study reported that high-fat diet (HFD)-fed mice housed at thermoneutrality exhibited impaired adipogenic differentiation, attributed to increased expression of histone deacetylase 9 (HDAC9). However, the impact of HFD on adipogenic differentiation is reportedly variable, possibly reflecting divergent environmental conditions such as housing temperature. METHODS: C57BL/6J (wild-type [WT]) mice were housed at either thermoneutral (28-30°C) or ambient (20-22°C) temperature and fed HFD or chow diet (CD) for 12 weeks. For acute exposure experiments, WT or transient receptor potential cation channel subfamily M member 8 (TRPM8) knockout mice housed under thermoneutrality were acutely exposed to ambient temperature for 6 to 24 h. RESULTS: WT mice fed HFD and housed at thermoneutrality, compared with ambient temperature, gained more weight despite reduced food intake. They likewise exhibited increased inguinal adipose tissue HDAC9 expression and reduced adipogenic differentiation in vitro and in vivo compared with CD-fed mice. Conversely, HFD-fed mice housed at ambient temperature exhibited minimal change in adipose HDAC9 expression or adipogenic differentiation. Acute exposure of WT mice to ambient temperature reduced adipose HDAC9 expression independent of sympathetic ß-adrenergic signaling via a TRPM8-dependent mechanism. CONCLUSIONS: Adipose HDAC9 expression is temperature sensitive, regulating adipogenic differentiation in HFD-fed mice housed under thermoneutrality.


Asunto(s)
Tejido Adiposo , Vivienda , Animales , Ratones , Tejido Adiposo/metabolismo , Dieta Alta en Grasa , Histona Desacetilasas/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Temperatura
3.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38014255

RESUMEN

Introduction: Human saphenous veins (SV) are widely used as grafts in coronary artery bypass (CABG) surgery but often fail due to neointima proliferation (NP). NP involves complex interplay between vascular smooth muscle cells (VSMC) and fibroblasts. Little is known, however, regarding the transcriptomic and proteomic dynamics of NP. Here, we performed multi-omics analysis in an ex vivo tissue culture model of NP in human SV procured for CABG surgery. Methods and results: Histological examination demonstrated significant elastin degradation and NP (indicated by increased neointima area and neointima/media ratio) in SV subjected to tissue culture. Analysis of data from 73 patients suggest that the process of SV adaptation and NP may differ according to sex and body mass index. RNA sequencing confirmed upregulation of pro-inflammatory and proliferation-related genes during NP and identified novel processes, including increased cellular stress and DNA damage responses, which may reflect tissue trauma associated with SV harvesting. Proteomic analysis identified upregulated extracellular matrix-related and coagulation/thrombosis proteins and downregulated metabolic proteins. Spatial transcriptomics detected transdifferentiating VSMC in the intima on the day of harvesting and highlighted dynamic alterations in fibroblast and VSMC phenotype and behavior during NP. Specifically, we identified new cell subpopulations contributing to NP, including SPP1 + , LGALS3 + VSMC and MMP2 + , MMP14 + fibroblasts. Conclusion: Dynamic alterations of gene and protein expression occur during NP in human SV. Identification of the human-specific molecular and cellular mechanisms may provide novel insight into SV bypass graft disease.

4.
bioRxiv ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37503031

RESUMEN

Introduction: Inflammation is a key pathogenic feature of abdominal aortic aneurysm (AAA). Soluble epoxide hydrolase (sEH) is a pro-inflammatory enzyme that converts cytochrome P450-derived epoxides of fatty acids to the corresponding diols, and pharmacological inhibition of sEH prevented AAA formation. Both cytochrome P450 enzymes and sEH are highly expressed in the liver. Here, we investigated the role of hepatic sEH in AAA using a selective pharmacological inhibitor of sEH and hepatocyte-specific Ephx2 (which encodes sEH gene) knockout (KO) mice in two models of AAA [angiotensin II (AngII) infusion and calcium chloride (CaCl 2 ) application]. Methods and results: sEH expression and activity were strikingly higher in mouse liver compared with aorta and further increased the context of AAA, in conjunction with elevated expression of the transcription factor Sp1 and the epigenetic regulator Jarid1b, which have been reported to positively regulate sEH expression. Pharmacological sEH inhibition, or liver-specific sEH disruption, achieved by crossing sEH floxed mice with albumin-cre mice, prevented AAA formation in both models, concomitant with reduced expression of hepatic sEH as well as complement factor 3 (C3) and serum amyloid A (SAA), liver-derived factors linked to AAA formation. Moreover, sEH antagonism markedly reduced C3 and SAA protein accumulation in the aortic wall. Co-incubation of liver ex vivo with aneurysm-prone aorta resulted in induction of sEH in the liver, concomitant with upregulation of Sp1, Jarid1b, C3 and SAA gene expression, suggesting that the aneurysm-prone aorta secretes factors that activate sEH and downstream inflammatory signaling in the liver. Using an unbiased proteomic approach, we identified a number of dysregulated proteins [ e.g., plastin-2, galectin-3 (gal-3), cathepsin S] released by aneurysm-prone aorta as potential candidate mediators of hepatic sEH induction. Conclusion: We provide the first direct evidence of the liver's role in orchestrating AAA via the enzyme sEH. These findings not only provide novel insight into AAA pathogenesis, but they have potentially important implications with regard to developing effective medical therapies for AAA.

5.
Front Immunol ; 14: 1095034, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006244

RESUMEN

Introduction: Patients with systemic lupus erythematosus (SLE) are at elevated risk for Q10 cardiovascular disease (CVD) due to accelerated atherosclerosis. Compared to heathy control subjects, lupus patients have higher volumes and densities of thoracic aortic perivascular adipose tissue (PVAT), which independently associates with vascular calcification, a marker of subclinical atherosclerosis. However, the biological and functional role of PVAT in SLE has not been directly investigated. Methods: Using mouse models of lupus, we studied the phenotype and function of PVAT, and the mechanisms linking PVAT and vascular dysfunction in lupus disease. Results and discussion: Lupus mice were hypermetabolic and exhibited partial lipodystrophy, with sparing of thoracic aortic PVAT. Using wire myography, we found that mice with active lupus exhibited impaired endothelium-dependent relaxation of thoracic aorta, which was further exacerbated in the presence of thoracic aortic PVAT. Interestingly, PVAT from lupus mice exhibited phenotypic switching, as evidenced by "whitening" and hypertrophy of perivascular adipocytes along with immune cell infiltration, in association with adventitial hyperplasia. In addition, expression of UCP1, a brown/beige adipose marker, was dramatically decreased, while CD45-positive leukocyte infiltration was increased, in PVAT from lupus mice. Furthermore, PVAT from lupus mice exhibited a marked decrease in adipogenic gene expression, concomitant with increased pro-inflammatory adipocytokine and leukocyte marker expression. Taken together, these results suggest that dysfunctional, inflamed PVAT may contribute to vascular disease in lupus.


Asunto(s)
Aterosclerosis , Lupus Eritematoso Sistémico , Ratones , Animales , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Aorta Torácica/metabolismo , Aterosclerosis/metabolismo , Lupus Eritematoso Sistémico/metabolismo
6.
Cells ; 11(17)2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36078104

RESUMEN

Obesity is a major risk factor for both metabolic and cardiovascular disease. We reported that, in obese male mice, histone deacetylase 9 (HDAC9) is upregulated in adipose tissues, and global deletion of HDAC9 protected against high fat diet (HFD)-induced obesity and metabolic disease. Here, we investigated the impact of adipocyte-specific HDAC9 gene deletion on diet-induced obesity in male and female mice. The HDAC9 gene expression was increased in adipose tissues of obese male and female mice and HDAC9 expression correlated positively with body mass index in humans. Interestingly, female, but not male, adipocyte-specific HDAC9 KO mice on HFD exhibited reduced body weight and visceral adipose tissue mass, adipocyte hypertrophy, and improved insulin sensitivity, glucose tolerance and adipogenic differentiation gene expression. Furthermore, adipocyte-specific HDAC9 gene deletion in female mice improved metabolic health as assessed by whole body energy expenditure, oxygen consumption, and adaptive thermogenesis. Mechanistically, compared to female mice, HFD-fed male mice exhibited preferential HDAC9 expression in the stromovascular fraction, which may have offset the impact of adipocyte-specific HDAC9 gene deletion in male mice. These results suggest that HDAC9 expressed in adipocytes is detrimental to obesity in female mice and provides novel evidence of sex-related differences in HDAC9 cellular expression and contribution to obesity-related metabolic disease.


Asunto(s)
Histona Desacetilasas , Enfermedades Metabólicas , Obesidad , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Obesos , Obesidad/genética , Obesidad/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
7.
Clin Sci (Lond) ; 136(5): 309-321, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35132998

RESUMEN

Prostaglandin D2 (PGD2) released from immune cells or other cell types activates its receptors, D prostanoid receptor (DP)1 and 2 (DP1 and DP2), to promote inflammatory responses in allergic and lung diseases. Prostaglandin-mediated inflammation may also contribute to vascular diseases such as abdominal aortic aneurysm (AAA). However, the role of DP receptors in the pathogenesis of AAA has not been systematically investigated. In the present study, DP1-deficient mice and pharmacological inhibitors of either DP1 or DP2 were tested in two distinct mouse models of AAA formation: angiotensin II (AngII) infusion and calcium chloride (CaCl2) application. DP1-deficient mice [both heterozygous (DP1+/-) and homozygous (DP1-/-)] were protected against CaCl2-induced AAA formation, in conjunction with decreased matrix metallopeptidase (MMP) activity and adventitial inflammatory cell infiltration. In the AngII infusion model, DP1+/- mice, but not DP1-/- mice, exhibited reduced AAA formation. Interestingly, compensatory up-regulation of the DP2 receptor was detected in DP1-/- mice in response to AngII infusion, suggesting a potential role for DP2 receptors in AAA. Treatment with selective antagonists of DP1 (laropiprant) or DP2 (fevipiprant) protected against AAA formation, in conjunction with reduced elastin degradation and aortic inflammatory responses. In conclusion, PGD2 signaling contributes to AAA formation in mice, suggesting that antagonists of DP receptors, which have been extensively tested in allergic and lung diseases, may be promising candidates to ameliorate AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal/etiología , Receptores Inmunológicos/fisiología , Receptores de Prostaglandina/fisiología , Angiotensina II/farmacología , Animales , Aneurisma de la Aorta Abdominal/prevención & control , Masculino , Ratones , Receptores Inmunológicos/antagonistas & inhibidores , Receptores de Prostaglandina/antagonistas & inhibidores
8.
Front Cardiovasc Med ; 7: 595011, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195484

RESUMEN

Introduction: Abdominal aortic aneurysms (AAA) are characterized by localized inflammation, extracellular matrix degradation, and apoptosis of smooth muscle cells, which together lead to progressive and irreversible aortic dilation. Major risk factors for AAA include smoking and aging, both of which prominently alter gene expression via epigenetic mechanisms, including histone methylation (me) and acetylation (ac).However, little is known about epigenomic dynamics during AAA formation. Here, we profiled histone modification patterns in aortic tissues during AAA formation in two distinct mouse models; (1) angiotensin II (AngII) infusion in low density lipoprotein receptor (LDLR) knockout (KO) mice, and (2) calcium chloride (CaCl2) application in wild type mice. Methods and Results: AAA formed in both models, in conjunction with enhanced macrophage infiltration, elastin degradation and matrix metalloproteinases expression as evaluated by immunohistochemistry. To investigate the histone modification patterns during AAA formation, total histone proteins were extracted from AAA tissues, and histone H3 modifications were quantified using profiling kits. Intriguingly, we observed dynamic changes in histone H3 modifications of lysine (K) residues at different time points during AAA formation. In mature aneurysmal tissues at 3 weeks after AngII infusion, we detected reduced K4/K27/K36 monomethylation, K9 trimethylation K9, and K9/K56 acetylation (<70%), and increased K4 trimethylation (>130%). Conversely, in CaCl2-induced AAA, K4/K9/K27/K36/K79 monomethylation and K9/K18/K56 acetylation were reduced in AAA tissues, whereas K27 di-/tri-methylation and K14 acetylation were upregulated. Interestingly, K4/K27/K36 monomethylation, K9 trimethylation, and K9/K56 acetylation were commonly downregulated in both animal models, while no H3 modifications were uniformly upregulated. Western blot of AAA tissues confirmed markedly reduced levels of key H3 modifications, including H3K4me1, H3K9me3, and H3K56ac. Furthermore, pathway enrichment analysis using an integrative bioinformatics approach identified specific molecular pathways, including endocytosis, exon guidance and focal adhesion signaling, that may potentially be linked to these histone H3 modifications during AAA formation. Conclusions: Dynamic modifications of histone H3 occur during AAA formation in both animal models. We identified 6 discreet H3 modifications that are consistently downregulated in both models, suggesting a possible role in AAA pathobiology. Identifying the functional mechanisms may facilitate development of novel strategies for AAA prevention or treatment.

9.
Cardiovasc Res ; 116(14): 2226-2238, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31710686

RESUMEN

AIMS: Chronic adventitial and medial infiltration of immune cells play an important role in the pathogenesis of abdominal aortic aneurysms (AAAs). Nicotinic acid (niacin) was shown to inhibit atherosclerosis by activating the anti-inflammatory G protein-coupled receptor GPR109A [also known as hydroxycarboxylic acid receptor 2 (HCA2)] expressed on immune cells, blunting immune activation and adventitial inflammatory cell infiltration. Here, we investigated the role of niacin and GPR109A in regulating AAA formation. METHODS AND RESULTS: Mice were supplemented with niacin or nicotinamide, and AAA was induced by angiotensin II (AngII) infusion or calcium chloride (CaCl2) application. Niacin markedly reduced AAA formation in both AngII and CaCl2 models, diminishing adventitial immune cell infiltration, concomitant inflammatory responses, and matrix degradation. Unexpectedly, GPR109A gene deletion did not abrogate the protective effects of niacin against AAA formation, suggesting GPR109A-independent mechanisms. Interestingly, nicotinamide, which does not activate GPR109A, also inhibited AAA formation and phenocopied the effects of niacin. Mechanistically, both niacin and nicotinamide supplementation increased nicotinamide adenine dinucleotide (NAD+) levels and NAD+-dependent Sirt1 activity, which were reduced in AAA tissues. Furthermore, pharmacological inhibition of Sirt1 abrogated the protective effect of nicotinamide against AAA formation. CONCLUSION: Niacin protects against AAA formation independent of GPR109A, most likely by serving as an NAD+ precursor. Supplementation of NAD+ using nicotinamide-related biomolecules may represent an effective and well-tolerated approach to preventing or treating AAA.


Asunto(s)
Aorta Abdominal/efectos de los fármacos , Aneurisma de la Aorta Abdominal/prevención & control , NAD/metabolismo , Niacina/farmacología , Niacinamida/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina II , Animales , Aorta Abdominal/metabolismo , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Cloruro de Calcio , Células Cultivadas , Dilatación Patológica , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo
10.
J Biol Chem ; 294(21): 8577-8591, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30971429

RESUMEN

Enhancer of zeste homolog 2 (EZH2), an epigenetic regulator that plays a key role in cell differentiation and oncogenesis, was reported to promote adipogenic differentiation in vitro by catalyzing trimethylation of histone 3 lysine 27. However, inhibition of EZH2 induced lipid accumulation in certain cancer and hepatocyte cell lines. To address this discrepancy, we investigated the role of EZH2 in adipogenic differentiation and lipid metabolism using primary human and mouse preadipocytes and adipose-specific EZH2 knockout (KO) mice. We found that the EZH2-selective inhibitor GSK126 induced lipid accumulation in human adipocytes, without altering adipocyte differentiation marker gene expression. Moreover, adipocyte-specific EZH2 KO mice, generated by crossing EZH2 floxed mice with adiponectin-Cre mice, displayed significantly increased body weight, adipose tissue mass, and adipocyte cell size and reduced very low-density lipoprotein (VLDL) levels, as compared with littermate controls. These phenotypic alterations could not be explained by differences in feeding behavior, locomotor activity, metabolic energy expenditure, or adipose lipolysis. In addition, human adipocytes treated with either GSK126 or vehicle exhibited comparable rates of glucose-stimulated triglyceride accumulation and fatty acid uptake. Mechanistically, lipid accumulation induced by GSK126 in adipocytes was lipoprotein-dependent, and EZH2 inhibition or gene deletion promoted lipoprotein-dependent lipid uptake in vitro concomitant with up-regulated apolipoprotein E (ApoE) gene expression. Deletion of ApoE blocked the effects of GSK126 to promote lipoprotein-dependent lipid uptake in murine adipocytes. Collectively, these results indicate that EZH2 inhibition promotes lipoprotein-dependent lipid accumulation via inducing ApoE expression in adipocytes, suggesting a novel mechanism of lipid regulation by EZH2.


Asunto(s)
Adipocitos/metabolismo , Apolipoproteínas E/metabolismo , Diferenciación Celular , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Lipogénesis , Lipólisis , Adipocitos/citología , Animales , Apolipoproteínas E/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Humanos , Lipoproteínas VLDL/genética , Lipoproteínas VLDL/metabolismo , Ratones , Regulación hacia Arriba
11.
Cardiovasc Drugs Ther ; 32(5): 503-510, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097828

RESUMEN

PURPOSE: Perivascular adipose tissue (PVAT) surrounds the arterial adventitia and plays an important role in vascular homeostasis. PVAT expands in obesity, and inflamed PVAT can locally promote endothelial dysfunction and atherosclerosis. Here, using adipose tissue transplantation, we tested the hypothesis that expansion of PVAT can also remotely exacerbate vascular disease. METHODS: Fifty milligrams of abdominal aortic PVAT was isolated from high-fat diet (HFD)-fed wild-type mice and transplanted onto the abdominal aorta of lean LDL receptor knockout mice. Subcutaneous and visceral adipose tissues were used as controls. After HFD feeding for 10 weeks, body weight, glucose/insulin sensitivity, and lipid levels were measured. Adipocytokine gene expression was assessed in the transplanted adipose tissues, and the thoracic aorta was harvested to quantify atherosclerotic lesions by Oil-Red O staining and to assess vasorelaxation by wire myography. RESULTS: PVAT transplantation did not influence body weight, fat composition, lipid levels, or glucose/insulin sensitivity. However, as compared with controls, transplantation of PVAT onto the abdominal aorta increased thoracic aortic atherosclerosis. Furthermore, PVAT transplantation onto the abdominal aorta inhibited endothelium-dependent relaxation in the thoracic aorta. MCP-1 and TNF-α expression was elevated, while adiponectin expression was reduced, in the transplanted PVAT tissue, suggesting augmented inflammation as a potential mechanism for the remote vascular effects of transplanted PVAT. CONCLUSIONS: These data suggest that PVAT expansion and inflammation in obesity can remotely induce endothelial dysfunction and augment atherosclerosis. Identifying the underlying mechanisms may lead to novel approaches for risk assessment and treatment of obesity-related vascular disease.


Asunto(s)
Tejido Adiposo Blanco/trasplante , Aorta Abdominal/metabolismo , Aorta Abdominal/cirugía , Aorta Torácica/metabolismo , Aterosclerosis/metabolismo , Comunicación Paracrina , Placa Aterosclerótica , Adiponectina/metabolismo , Tejido Adiposo Blanco/metabolismo , Adiposidad , Animales , Aorta Abdominal/patología , Aorta Abdominal/fisiopatología , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Quimiocina CCL2/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de LDL/deficiencia , Receptores de LDL/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Vasodilatación
12.
Am J Physiol Heart Circ Physiol ; 313(6): H1168-H1179, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28971841

RESUMEN

Oxidative stress plays a fundamental role in abdominal aortic aneurysm (AAA) formation. Activated polymorphonuclear leukocytes (or neutrophils) are associated with AAA and express myeloperoxidase (MPO), which promotes inflammation, matrix degradation, and other pathological features of AAA, including enhanced oxidative stress through generation of reactive oxygen species. Both plasma and aortic MPO levels are elevated in patients with AAA, but the role of MPO in AAA pathogenesis has, heretofore, never been investigated. Here, we show that MPO gene deletion attenuates AAA formation in two animal models: ANG II infusion in apolipoprotein E-deficient mice and elastase perfusion in C57BL/6 mice. Oral administration of taurine [1% or 4% (wt/vol) in drinking water], an amino acid known to react rapidly with MPO-generated oxidants like hypochlorous acid, also prevented AAA formation in the ANG II and elastase models as well as the CaCl2 application model of AAA formation while reducing aortic peroxidase activity and aortic protein-bound dityrosine levels, an oxidative cross link formed by MPO. Both MPO gene deletion and taurine supplementation blunted aortic macrophage accumulation, elastin fragmentation, and matrix metalloproteinase activation, key features of AAA pathogenesis. Moreover, MPO gene deletion and taurine administration significantly attenuated the induction of serum amyloid A, which promotes ANG II-induced AAAs. These data implicate MPO in AAA pathogenesis and suggest that studies exploring whether taurine can serve as a potential therapeutic for the prevention or treatment of AAA in patients merit consideration.NEW & NOTEWORTHY Neutrophils are abundant in abdominal aortic aneurysm (AAA), and myeloperoxidase (MPO), prominently expressed in neutrophils, is associated with AAA in humans. This study demonstrates that MPO gene deletion or supplementation with the natural product taurine, which can scavenge MPO-generated oxidants, can prevent AAA formation, suggesting an attractive potential therapeutic strategy for AAA.


Asunto(s)
Antioxidantes/farmacología , Aorta Abdominal/efectos de los fármacos , Aneurisma de la Aorta Abdominal/prevención & control , Neutrófilos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Taurina/farmacología , Angiotensina II , Animales , Aorta Abdominal/enzimología , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/enzimología , Aneurisma de la Aorta Abdominal/genética , Cloruro de Calcio , Modelos Animales de Enfermedad , Eliminación de Gen , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Neutrófilos/enzimología , Elastasa Pancreática , Peroxidasa/deficiencia , Peroxidasa/genética , Especies Reactivas de Oxígeno/metabolismo , Proteína Amiloide A Sérica/metabolismo
13.
PLoS One ; 8(8): e70580, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936451

RESUMEN

We have previously reported protection against hypoxic injury by a cell-permeable, mitochondrially-targeted δPKC-d subunit of F1Fo ATPase (dF1Fo) interaction inhibitor [NH2-YGRKKRRQRRRMLA TRALSLIGKRAISTSVCAGRKLALKTIDWVSFDYKDDDDK-COOH] in neonatal cardiac myo-cytes. In the present work we demonstrate the partitioning of this peptide to the inner membrane and matrix of mitochondria when it is perfused into isolated rat hearts. We also used ammonium sulfate ((NH4)2SO4) and chloroform/methanol precipitation of heart effluents to demonstrate reduced card-iac troponin I (cTnI) release from ischemic rat hearts perfused with this inhibitor. 50% (NH4)2SO4 saturation of perfusates collected from Langendorff rat heart preparations optimally precipitated cTnI, allowing its detection in Western blots. In hearts receiving 20 min of ischemia followed by 30, or 60 min of reperfusion, the Mean±S.E. (n=5) percentage of maximal cTnI release was 30 ± 7 and 60 ± 17, respectively, with additional cTnI release occurring after 150 min of reperfusion. Perfusion of hearts with the δPKC-dF1Fo interaction inhibitor, prior to 20 min of ischemia and 60-150 min of reperfusion, reduced cTnI release by 80%. Additionally, we found that when soybean trypsin inhibitor (SBTI), was added to rat heart effluents, it could also be precipitated using (NH4)2SO4 and detected in western blots. This provided a convenient method for normalizing protein recoveries between groups. Our results support the further development of the δPKC-dF1Fo inhibitor as a potential therapeutic for combating cardiac ischemic injury. In addition, we have developed an improved method for the detection of cTnI release from perfused rat hearts.


Asunto(s)
Sulfato de Amonio/química , Precipitación Química , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Proteína Quinasa C-delta/metabolismo , ATPasas de Translocación de Protón/metabolismo , Troponina I/metabolismo , Secuencia de Aminoácidos , Animales , Biomarcadores/metabolismo , Cloroformo/química , Masculino , Metanol/química , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Isquemia Miocárdica/patología , Péptidos/química , Péptidos/farmacología , Perfusión , Unión Proteica/efectos de los fármacos , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley , Glycine max/química , Troponina I/química , Troponina I/aislamiento & purificación , Inhibidores de Tripsina/farmacología
14.
Curr Med Chem ; 18(30): 4684-714, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21864274

RESUMEN

Throughout our lifetime the F1Fo ATP synthase produces the majority of our biological energy, and plays central roles in the structure and organization of mitochondria, yet our understanding of its roles in human disease remain largely enigmatic. It seems logical that even intermittent impairment of this highly important enzyme could deprive the body's tissues of energy at crucial times, which may predispose or contribute to illness. Indeed, evidence is accumulating that there are dire consequences of energy depletion in acute lifethreatening conditions, such as heart attacks, as well as chronic diseases, including aging, cancer, diabetes and heart failure. Recent advances in our understanding of the expanding roles of F1Fo ATP synthase, and how it is regulated, combined with the development of novel strategies for manipulating its function, may provide renewed hope for therapeutic improvement of energy homeostasis, and mitochondrial integrity, in a host of human diseases. In this review we will highlight what is known about the molecular regulation of this amazing enzyme complex, discuss effects of physiological agonists and therapeutic drugs on its functions, and present evidence supporting its involvement in the ills of mankind. Finally, we will outline existing challenges, and promising new avenues for targeting the enzyme therapeutically.


Asunto(s)
Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/fisiología , Adenosina Trifosfato/biosíntesis , Corticoesteroides/farmacología , Envejecimiento/fisiología , Albinismo/tratamiento farmacológico , Alcoholismo/fisiopatología , Animales , Enfermedades Autoinmunes/fisiopatología , Infecciones Bacterianas/fisiopatología , Restricción Calórica , Enfermedades Cardiovasculares/fisiopatología , Diabetes Mellitus/fisiopatología , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Translocasas Mitocondriales de ADP y ATP/fisiología , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/efectos de los fármacos , Modelos Moleculares , Neoplasias/fisiopatología , Fosforilación Oxidativa , Subunidades de Proteína/química
15.
Biochem J ; 429(2): 335-45, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20578995

RESUMEN

The F1Fo-ATP synthase provides most of the heart's energy, yet events that alter its function during injury are poorly understood. Recently, we described a potent inhibitory effect on F1Fo-ATP synthase function mediated by the interaction of PKCdelta (protein kinase Cdelta) with dF1Fo ('d' subunit of the F1Fo-ATPase/ATP synthase). We have now developed novel peptide modulators which facilitate or inhibit the PKCdelta-dF1Fo interaction. These peptides include HIV-Tat (transactivator of transcription) protein transduction and mammalian mitochondrial-targeting sequences. Pre-incubation of NCMs (neonatal cardiac myocyte) with 10 nM extracellular concentrations of the mitochondrial-targeted PKCdelta-dF1Fo interaction inhibitor decreased Hx (hypoxia)-induced co-IP (co-immunoprecipitation) of PKCdelta with dF1Fo by 40+/-9%, abolished Hx-induced inhibition of F1Fo-ATPase activity, attenuated Hx-induced losses in F1Fo-derived ATP and protected against Hx- and reperfusion-induced cell death. A scrambled-sequence (inactive) peptide, which contained HIV-Tat and mitochondrial-targeting sequences, was without effect. In contrast, the cell-permeant mitochondrial-targeted PKCdelta-dF1Fo facilitator peptide, which we have shown previously to induce the PKCdelta-dF1Fo co-IP, was found to inhibit F1Fo-ATPase activity to an extent similar to that caused by Hx alone. The PKCdelta-dF1Fo facilitator peptide also decreased ATP levels by 72+/-18% under hypoxic conditions in the presence of glycolytic inhibition. None of the PKCdelta-dF1Fo modulatory peptides altered the inner mitochondrial membrane potential. Our studies provide the first evidence that disruption of the PKCdelta-dF1Fo interaction using cell-permeant mitochondrial-targeted peptides attenuates cardiac injury resulting from prolonged oxygen deprivation.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Proteína Quinasa C-delta/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Hipoxia de la Célula/fisiología , Supervivencia Celular/efectos de los fármacos , Metabolismo Energético , Técnicas In Vitro , Ionóforos/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , Datos de Secuencia Molecular , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/farmacología , Unión Proteica , Proteína Quinasa C-delta/antagonistas & inhibidores , Proteína Quinasa C-delta/química , Subunidades de Proteína , Ratas , Ratas Sprague-Dawley
16.
J Biol Chem ; 285(29): 22164-73, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20460381

RESUMEN

The F(1)F(0)-ATP synthase provides approximately 90% of cardiac ATP, yet little is known regarding its regulation under normal or pathological conditions. Previously, we demonstrated that protein kinase Cdelta (PKCdelta) inhibits F(1)F(0) activity via an interaction with the "d" subunit of F(1)F(0)-ATP synthase (dF(1)F(0)) in neonatal cardiac myocytes (NCMs) (Nguyen, T., Ogbi, M., and Johnson, J. A. (2008) J. Biol. Chem. 283, 29831-29840). We have now identified a dF(1)F(0)-derived peptide (NH(2)-(2)AGRKLALKTIDWVSF(16)-COOH) that inhibits PKCdelta binding to dF(1)F(0) in overlay assays. We have also identified a second dF(1)F(0)-derived peptide (NH(2)-(111)RVREYEKQLEKIKNMI(126)-COOH) that facilitates PKCdelta binding to dF(1)F(0). Incubation of NCMs with versions of these peptides containing HIV-Tat protein transduction and mammalian mitochondrial targeting sequences resulted in their delivery into mitochondria. Preincubation of NCMs, with 10 nm extracellular concentrations of the mitochondrially targeted PKCdelta-dF(1)F(0) interaction inhibitor, decreased 100 nm 4beta-phorbol 12-myristate 13-acetate (4beta-PMA)-induced co-immunoprecipitation of PKCdelta with dF(1)F(0) by 50 +/- 15% and abolished the 30 nm 4beta-PMA-induced inhibition of F(1)F(0)-ATPase activity. A scrambled sequence (inactive) peptide, which contained HIV-Tat and mitochondrial targeting sequences, was without effect. In contrast, the cell-permeable, mitochondrially targeted PKCdelta-dF(1)F(0) facilitator peptide by itself induced the PKCdelta-dF(1)F(0) co-immunoprecipitation and inhibited F(1)F(0)-ATPase activity. In in vitro PKC add-back experiments, the PKCdelta-F(1)F(0) inhibitor blocked PKCdelta-mediated inhibition of F(1)F(0)-ATPase activity, whereas the facilitator induced inhibition. We have developed the first cell-permeable, mitochondrially targeted modulators of the PKCdelta-dF(1)F(0) interaction in NCMs. These novel peptides will improve our understanding of cardiac F(1)F(0) regulation and may have potential as therapeutics to attenuate cardiac injury.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Diseño de Fármacos , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Miocitos Cardíacos/enzimología , Péptidos/farmacología , Proteína Quinasa C-delta/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Pruebas de Enzimas , Inmunoprecipitación , Mitocondrias/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , ATPasas de Translocación de Protón Mitocondriales/química , Datos de Secuencia Molecular , Miocitos Cardíacos/efectos de los fármacos , Péptidos/síntesis química , Péptidos/química , Unión Proteica/efectos de los fármacos , Proteína Quinasa C-delta/química , Señales de Clasificación de Proteína , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley , Acetato de Tetradecanoilforbol/farmacología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacología
17.
J Biol Chem ; 283(44): 29831-40, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18725417

RESUMEN

Mitochondrial protein kinase C isozymes have been reported to mediate both cardiac ischemic preconditioning and ischemia/reperfusion injury. In addition, cardiac preconditioning improves the recovery of ATP levels after ischemia/reperfusion injury. We have, therefore, evaluated protein kinase C modulation of the F(1)F(0) ATPase in neonatal cardiac myocytes. Exposure of cells to 3 or 100 nM 4beta-phorbol 12-myristate-13-acetate induced co-immunoprecipitation of delta protein kinase C (but not alpha, epsilon, or zeta protein kinase C) with the d subunit of the F(1)F(0) ATPase. This co-immunoprecipitation correlated with 40+/-3% and 72+/-9% inhibitions of oligomycin-sensitive F(1)F(0) ATPase activity, respectively. We observed prominent expression of delta protein kinase C in cardiac myocyte mitochondria, which was enhanced following a 4-h hypoxia exposure. In contrast, hypoxia decreased mitochondrial zetaPKC levels by 85+/-1%. Following 4 h of hypoxia, F(1)F(0) ATPase activity was inhibited by 75+/-9% and delta protein kinase C co-immunoprecipitated with the d subunit of F(1)F(0) ATPase. In vitro incubation of protein kinase C with F(1)F(0) ATPase enhanced F(1)F(0) activity in the absence of protein kinase C activators and inhibited it in the presence of activators. Recombinant delta protein kinase C also inhibited F(1)F(0) ATPase activity. Protein kinase C overlay assays revealed delta protein kinase C binding to the d subunit of F(1)F(0) ATPase, which was modulated by diacylglycerol, phosphatidylserine, and cardiolipin. Our results suggest a novel regulation of the F(1)F(0) ATPase by the delta protein kinase C isozyme.


Asunto(s)
Mitocondrias/metabolismo , Proteína Quinasa C-delta/metabolismo , ATPasas de Translocación de Protón/química , Animales , Electroforesis en Gel Bidimensional , Hipoxia , Modelos Biológicos , Unión Proteica , Isoformas de Proteínas , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/patología , Acetato de Tetradecanoilforbol/farmacología
18.
Am J Physiol Heart Circ Physiol ; 294(6): H2637-45, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18408135

RESUMEN

We have previously described a PKC-epsilon interaction with cytochrome oxidase subunit IV (COIV) that correlates with enhanced CO activity and cardiac ischemic preconditioning (PC). We therefore investigated the effects of PC and ischemia-reperfusion (I/R) injury on CO subunit levels in an anesthetized rat coronary ligation model. Homogenates prepared from the left ventricular regions at risk (RAR) and not at risk (RNAR) for I/R injury were fractionated into cell-soluble (S), 600 g low-speed centrifugation (L), gradient-purified mitochondrial (M), and 100,000 g particulate (P) fractions. In RAR tissue, PC (2 cycles of 5-min ischemia and 5-min reperfusion) decreased the COI in the P fraction ( approximately 29% of total cellular COI), suggesting changes in interfibrillar mitochondria. After 30 min of ischemia and 120 min of reperfusion, total COI levels decreased in the RAR by 72%. Subunit Va was also downregulated by 42% following prolonged I/R in the RAR. PC administered before I/R reduced the loss of COI in the M and P fractions approximately 30% and prevented COVa losses completely. We observed no losses in subunits Vb and VIIa following I/R alone; however, significant losses occurred when PC was administered before prolonged I/R. Delivery of a cell-permeable PKC-epsilon translocation inhibitor (epsilonV1-2) to isolated rat hearts before prolonged I/R dramatically increased COI loss, suggesting that PKC-epsilon protects COI levels. We propose that additional measures to protect CO subunits when coadministered with PC may improve its cardioprotection against I/R injury.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Precondicionamiento Isquémico Miocárdico , Miocardio/enzimología , Proteína Quinasa C-epsilon/antagonistas & inhibidores , Daño por Reperfusión/enzimología , Animales , Fraccionamiento Celular , Vasos Coronarios/cirugía , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ventrículos Cardíacos/enzimología , Hemodinámica , Ligadura , Mitocondrias Cardíacas/enzimología , Miocardio/patología , Fragmentos de Péptidos/farmacología , Proteína Quinasa C-epsilon/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Subunidades de Proteína , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Daño por Reperfusión/prevención & control , Factores de Tiempo , Troponina I/sangre , Tripsina/metabolismo
19.
Am J Physiol Heart Circ Physiol ; 293(4): H2219-30, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17660387

RESUMEN

We have utilized an in situ rat coronary ligation model to establish a PKC-epsilon cytochrome oxidase subunit IV (COIV) coimmunoprecipitation in myocardium exposed to ischemic preconditioning (PC). Ischemia-reperfusion (I/R) damage and PC protection were confirmed using tetrazolium-based staining methods and serum levels of cardiac troponin I. Homogenates prepared from the regions at risk (RAR) and not at risk (RNAR) for I/R injury were fractionated into cell-soluble (S), 600 g low-speed centrifugation (L), Percoll/Optiprep density gradient-purified mitochondrial (M), and 100,000 g particulate (P) fractions. COIV immunoreactivity and cytochrome-c oxidase activity measurements estimated the percentages of cellular mitochondria in S, L, M, and P fractions to be 0, 55, 29, and 16%, respectively. We observed 18, 3, and 3% of PKC-delta, -epsilon, and -zeta isozymes in the M fraction under basal conditions. Following PC, we observed a 61% increase in PKC-epsilon levels in the RAR M fraction compared with the RNAR M fraction. In RAR mitochondria, we also observed a 2.8-fold increase in PKC-epsilon serine 729 phosphoimmunoreactivity (autophosphorylation), indicating the presence of activated PKC-epsilon in mitochondria following PC. PC administered before prolonged I/R induced a 1.9-fold increase in the coimmunoprecipitation of COIV, with anti-PKC-epsilon antisera and a twofold enhancement of cytochrome-c oxidase activity. Our results suggest that PKC-epsilon may interact with COIV as a component of the cardioprotection in PC. Induction of this interaction may provide a novel therapeutic target for protecting the heart from I/R damage.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Inmunoprecipitación , Precondicionamiento Isquémico , Mitocondrias Cardíacas/enzimología , Infarto del Miocardio/terapia , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/enzimología , Proteína Quinasa C-epsilon/metabolismo , Animales , Vasos Coronarios/cirugía , Modelos Animales de Enfermedad , Activación Enzimática , Isoenzimas/metabolismo , Ligadura , Complejos Multiproteicos/metabolismo , Infarto del Miocardio/complicaciones , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Fosforilación Oxidativa , Ratas , Ratas Sprague-Dawley , Troponina I/sangre
20.
Biochem J ; 393(Pt 1): 191-9, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16336199

RESUMEN

We have previously identified a phorbol ester-induced PKCepsilon (protein kinase Cepsilon) interaction with the ( approximately 18 kDa) COIV [CO (cytochrome c oxidase) subunit IV] in NCMs (neonatal cardiac myocytes). Since PKCepsilon has been implicated as a key mediator of cardiac PC (preconditioning), we examined whether hypoxic PC could induce PKCepsilon-COIV interactions. Similar to our recent study with phorbol esters [Ogbi, Chew, Pohl, Stuchlik, Ogbi and Johnson (2004) Biochem. J. 382, 923-932], we observed a time-dependent increase in the in vitro phosphorylation of an approx. 18 kDa protein in particulate cell fractions isolated from NCMs subjected to 1-60 min of hypoxia. Introduction of a PKCepsilon-selective translocation inhibitor into cells attenuated this in vitro phosphorylation. Furthermore, when mitochondria isolated from NCMs exposed to 30 min of hypoxia were subjected to immunoprecipitation analyses using PKCepsilon-selective antisera, we observed an 11.1-fold increase in PKCepsilon-COIV co-precipitation. In addition, we observed up to 4-fold increases in CO activity after brief NCM hypoxia exposures that were also attenuated by introducing a PKCepsilon-selective translocation inhibitor into the cells. Finally, in Western-blot analyses, we observed a >2-fold PC-induced protection of COIV levels after 9 h index hypoxia. Our studies suggest that a PKCepsilon-COIV interaction and an enhancement of CO activity occur in NCM hypoxic PC. We therefore propose novel mechanisms of PKCepsilon-mediated PC involving enhanced energetics, decreased mitochondrial reactive oxygen species production and the preservation of COIV levels.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Precondicionamiento Isquémico Miocárdico , Miocitos Cardíacos/enzimología , Proteína Quinasa C-epsilon/metabolismo , Animales , Animales Recién Nacidos , Transporte de Electrón , Hipoxia , Mitocondrias Cardíacas/metabolismo , Unión Proteica , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA