Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Obstet Gynecol ; 225(1): 89.e1-89.e16, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33412130

RESUMEN

BACKGROUND: Intra-amniotic infection or inflammation is common in early preterm birth and associated with substantial neonatal lung morbidity owing to fetal exposure to proinflammatory cytokines and infectious organisms. Amniotic fluid interleukin 8, a proinflammatory cytokine, was previously correlated with the development of neonatal bronchopulmonary dysplasia, but whether amniotic fluid cytokines or placental pathology more accurately predicts neonatal lung pathology and morbidity is unknown. We have used a pregnant nonhuman primate model of group B Streptococcus infection to study the pathogenesis of intra-amniotic infection, bacterial invasion of the amniotic cavity and fetus, and microbial-host interactions. In this nonhuman primate model, we have studied the pathogenesis of group B Streptococcus strains with differing potential for virulence, which has resulted in a spectrum of intra-amniotic infection and fetal lung injury that affords the opportunity to study the inflammatory predictors of fetal lung pathology and injury. OBJECTIVE: This study aimed to determine whether fetal lung injury is best predicted by placental histopathology or the cytokine response in amniotic fluid or maternal plasma. STUDY DESIGN: Chronically catheterized pregnant monkeys (Macaca nemestrina, pigtail macaque) at 116 to 125 days gestation (term at 172 days) received a choriodecidual inoculation of saline (n=5), weakly hemolytic group B Streptococcus strain (n=5, low virulence), or hyperhemolytic group B Streptococcus strain (n=5, high virulence). Adverse pregnancy outcomes were defined as either preterm labor, microbial invasion of the amniotic cavity, or development of the fetal inflammatory response syndrome. Amniotic fluid and maternal and fetal plasma samples were collected after inoculation, and proinflammatory cytokines (tumor necrosis factor alpha, interleukin beta, interleukin 6, interleukin 8) were measured by a multiplex assay. Cesarean delivery was performed at the time of preterm labor or within 1 week of inoculation. Fetal necropsy was performed at the time of delivery. Placental pathology was scored in a blinded fashion by a pediatric pathologist, and fetal lung injury was determined by a semiquantitative score from histopathology evaluating inflammatory infiltrate, necrosis, tissue thickening, or collapse scored by a veterinary pathologist. RESULTS: The principal findings in our study are as follows: (1) adverse pregnancy outcomes occurred more frequently in animals receiving hyperhemolytic group B Streptococcus (80% with preterm labor, 80% with fetal inflammatory response syndrome) than in animals receiving weakly hemolytic group B Streptococcus (40% with preterm labor, 20% with fetal inflammatory response syndrome) and in controls (0% preterm labor, 0% fetal inflammatory response syndrome); (2) despite differences in the rate of adverse pregnancy outcomes and fetal inflammatory response syndrome, fetal lung injury scores were similar between animals receiving the weakly hemolytic group B Streptococcus strains and animals receiving the hyperhemolytic group B Streptococcus strains; (3) fetal lung injury score was significantly correlated with peak amniotic fluid cytokines interleukin 6 and interleukin 8 but not tumor necrosis factor alpha or interleukin 1 beta; and (4) fetal lung scores were poorly correlated with maternal and fetal plasma cytokine levels and placental pathology. CONCLUSION: Amniotic fluid interleukin 6 and interleukin 8 levels were superior predictors of fetal lung injury than placental histopathology or maternal plasma cytokines. This evidence supports a role for amniocentesis in the prediction of neonatal lung morbidity owing to intra-amniotic infection, which cannot be provided by cytokine analysis of maternal plasma or placental histopathology.


Asunto(s)
Líquido Amniótico/química , Citocinas/sangre , Interleucina-6/análisis , Interleucina-8/análisis , Lesión Pulmonar/embriología , Placenta/patología , Líquido Amniótico/microbiología , Animales , Modelos Animales de Enfermedad , Femenino , Inflamación/embriología , Inflamación/microbiología , Pulmón/embriología , Pulmón/microbiología , Pulmón/patología , Lesión Pulmonar/diagnóstico , Lesión Pulmonar/microbiología , Macaca nemestrina , Masculino , Embarazo , Resultado del Embarazo , Infecciones Estreptocócicas/embriología , Streptococcus agalactiae
2.
mBio ; 12(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33402537

RESUMEN

Invasive bacterial infections during pregnancy are a major risk factor for preterm birth, stillbirth, and fetal injury. Group B streptococci (GBS) are Gram-positive bacteria that asymptomatically colonize the lower genital tract but infect the amniotic fluid and induce preterm birth or stillbirth. Experimental models that closely emulate human pregnancy are pivotal for the development of successful strategies to prevent these adverse pregnancy outcomes. Using a unique nonhuman primate model that mimics human pregnancy and informs temporal events surrounding amniotic cavity invasion and preterm labor, we show that the animals inoculated with hyaluronidase (HylB)-expressing GBS consistently exhibited microbial invasion into the amniotic cavity, fetal bacteremia, and preterm labor. Although delayed cytokine responses were observed at the maternal-fetal interface, increased prostaglandin and matrix metalloproteinase levels in these animals likely mediated preterm labor. HylB-proficient GBS dampened reactive oxygen species production and exhibited increased resistance to neutrophils compared to an isogenic mutant. Together, these findings demonstrate how a bacterial enzyme promotes GBS amniotic cavity invasion and preterm labor in a model that closely resembles human pregnancy.IMPORTANCE Group B streptococci (GBS) are bacteria that commonly reside in the female lower genital tract as asymptomatic members of the microbiota. However, during pregnancy, GBS can infect tissues at the maternal-fetal interface, leading to preterm birth, stillbirth, or fetal injury. Understanding how GBS evade host defenses during pregnancy is key to developing improved preventive therapies for these adverse outcomes. In this study, we used a unique nonhuman primate model to show that an enzyme secreted by GBS, hyaluronidase (HylB) promotes bacterial invasion into the amniotic cavity and fetus. Although delayed immune responses were seen at the maternal-fetal interface, animals infected with hyaluronidase-expressing GBS exhibited premature cervical ripening and preterm labor. These observations reveal that HylB is a crucial GBS virulence factor that promotes bacterial invasion and preterm labor in a pregnancy model that closely emulates human pregnancy. Therefore, hyaluronidase inhibitors may be useful in therapeutic strategies against ascending GBS infection.


Asunto(s)
Hialuronoglucosaminidasa/metabolismo , Neutrófilos/inmunología , Trabajo de Parto Prematuro/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus agalactiae/metabolismo , Líquido Amniótico/microbiología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Hialuronoglucosaminidasa/genética , Inflamación , Pulmón/microbiología , Pulmón/patología , Macaca nemestrina , Neutrófilos/microbiología , Embarazo , Nacimiento Prematuro , Primates , Infecciones Estreptocócicas/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/enzimología , Streptococcus agalactiae/genética , Streptococcus agalactiae/inmunología
3.
Front Immunol ; 11: 770, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425945

RESUMEN

Leukocyte activation within the chorioamniotic membranes is strongly associated with inflammation and preterm labor (PTL). We hypothesized that prophylaxis with a broad-spectrum chemokine inhibitor (BSCI) would downregulate the inflammatory microenvironment induced by Group B Streptococcus (GBS, Streptococcus agalactiae) to suppress PTL and microbial invasion of the amniotic cavity (MIAC). To correlate BSCI administration with PTL and MIAC, we used a unique chronically catheterized non-human primate model of Group B Streptococcus (GBS)-induced PTL. In the early third trimester (128-138 days gestation; ~29-32 weeks human pregnancy), animals received choriodecidual inoculations of either: (1) saline (N = 6), (2) GBS, 1-5 × 108 colony forming units (CFU)/ml; N = 5), or (3) pre-treatment and daily infusions of a BSCI (10 mg/kg intravenous and intra-amniotic) with GBS (1-5 × 108 CFU/ml; N = 4). We measured amniotic cavity pressure (uterine contraction strength) and sampled amniotic fluid (AF) and maternal blood serially and cord blood at delivery. Cesarean section was performed 3 days post-inoculation or earlier for PTL. Data analysis used Fisher's exact test, Wilcoxon rank sum and one-way ANOVA with Bonferroni correction. Saline inoculation did not induce PTL or infectious sequelae. In contrast, GBS inoculation typically induced PTL (4/5, 80%), MIAC and fetal bacteremia (3/5; 60%). Remarkably, PTL did not occur in the BSCI+GBS group (0/4, 0%; p = 0.02 vs. GBS), despite MIAC and fetal bacteremia in all cases (4/4; 100%). Compared to the GBS group, BSCI prophylaxis was associated with significantly lower cytokine levels including lower IL-8 in amniotic fluid (p = 0.03), TNF-α in fetal plasma (p < 0.05), IFN-α and IL-7 in the fetal lung (p = 0.02) and IL-18, IL-2, and IL-7 in the fetal brain (p = 0.03). Neutrophilic chorioamnionitis was common in the BSCI and GBS groups, but was more severe in the BSCI+GBS group with greater myeloperoxidase staining (granulocyte marker) in the amnion and chorion (p < 0.05 vs. GBS). Collectively, these observations indicate that blocking the chemokine response to infection powerfully suppressed uterine contractility, PTL and the cytokine response, but did not prevent MIAC and fetal pneumonia. Development of PTL immunotherapies should occur in tandem with evaluation for AF microbes and consideration for antibiotic therapy.


Asunto(s)
Líquido Amniótico/microbiología , Quimiocinas/antagonistas & inhibidores , Trabajo de Parto Prematuro/prevención & control , Streptococcus agalactiae/patogenicidad , Animales , Animales Recién Nacidos , Cesárea , Citocinas/análisis , Femenino , Macrófagos/fisiología , Morbilidad , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Embarazo , Primates , Infecciones Estreptocócicas/complicaciones
5.
Nat Biotechnol ; 36(7): 597-605, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29969440

RESUMEN

Pluripotent stem cell-derived cardiomyocyte grafts can remuscularize substantial amounts of infarcted myocardium and beat in synchrony with the heart, but in some settings cause ventricular arrhythmias. It is unknown whether human cardiomyocytes can restore cardiac function in a physiologically relevant large animal model. Here we show that transplantation of ∼750 million cryopreserved human embryonic stem cell-derived cardiomyocytes (hESC-CMs) enhances cardiac function in macaque monkeys with large myocardial infarctions. One month after hESC-CM transplantation, global left ventricular ejection fraction improved 10.6 ± 0.9% vs. 2.5 ± 0.8% in controls, and by 3 months there was an additional 12.4% improvement in treated vs. a 3.5% decline in controls. Grafts averaged 11.6% of infarct size, formed electromechanical junctions with the host heart, and by 3 months contained ∼99% ventricular myocytes. A subset of animals experienced graft-associated ventricular arrhythmias, shown by electrical mapping to originate from a point-source acting as an ectopic pacemaker. Our data demonstrate that remuscularization of the infarcted macaque heart with human myocardium provides durable improvement in left ventricular function.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias Humanas/trasplante , Infarto del Miocardio/terapia , Miocitos Cardíacos/trasplante , Animales , Criopreservación , Modelos Animales de Enfermedad , Humanos , Macaca , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/citología , Células Madre Pluripotentes/trasplante , Primates
6.
Nat Med ; 24(3): 368-374, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29400709

RESUMEN

Zika virus (ZIKV) is a flavivirus with teratogenic effects on fetal brain, but the spectrum of ZIKV-induced brain injury is unknown, particularly when ultrasound imaging is normal. In a pregnant pigtail macaque (Macaca nemestrina) model of ZIKV infection, we demonstrate that ZIKV-induced injury to fetal brain is substantial, even in the absence of microcephaly, and may be challenging to detect in a clinical setting. A common and subtle injury pattern was identified, including (i) periventricular T2-hyperintense foci and loss of fetal noncortical brain volume, (ii) injury to the ependymal epithelium with underlying gliosis and (iii) loss of late fetal neuronal progenitor cells in the subventricular zone (temporal cortex) and subgranular zone (dentate gyrus, hippocampus) with dysmorphic granule neuron patterning. Attenuation of fetal neurogenic output demonstrates potentially considerable teratogenic effects of congenital ZIKV infection even without microcephaly. Our findings suggest that all children exposed to ZIKV in utero should receive long-term monitoring for neurocognitive deficits, regardless of head size at birth.


Asunto(s)
Feto/virología , Complicaciones Infecciosas del Embarazo/fisiopatología , Infección por el Virus Zika/virología , Virus Zika/patogenicidad , Animales , Modelos Animales de Enfermedad , Femenino , Feto/fisiopatología , Humanos , Macaca nemestrina/virología , Microcefalia/diagnóstico por imagen , Microcefalia/fisiopatología , Microcefalia/virología , Neurogénesis/genética , Embarazo , Complicaciones Infecciosas del Embarazo/diagnóstico por imagen , Complicaciones Infecciosas del Embarazo/virología , Virus Zika/genética , Infección por el Virus Zika/genética , Infección por el Virus Zika/fisiopatología
7.
Sci Immunol ; 1(4)2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27819066

RESUMEN

Preterm birth is a leading cause of neonatal morbidity and mortality. Although microbial invasion of the amniotic cavity (MIAC) is associated with the majority of early preterm births, the temporal events that occur during MIAC and preterm labor are not known. Group B Streptococci (GBS) are ß-hemolytic, gram-positive bacteria, which commonly colonize the vagina but have been recovered from the amniotic fluid in preterm birth cases. To understand temporal events that occur during MIAC, we utilized a unique chronically catheterized nonhuman primate model that closely emulates human pregnancy. This model allows monitoring of uterine contractions, timing of MIAC and immune responses during pregnancy-associated infections. Here, we show that adverse outcomes such as preterm labor, MIAC, and fetal sepsis were observed more frequently during infection with hemolytic GBS when compared to nonhemolytic GBS. Although MIAC was associated with systematic progression in chorioamnionitis beginning with chorionic vasculitis and progressing to neutrophilic infiltration, the ability of the GBS hemolytic pigment toxin to induce neutrophil cell death and subvert killing by neutrophil extracellular traps (NETs) in placental membranes in vivo facilitated MIAC and fetal injury. Furthermore, compared to maternal neutrophils, fetal neutrophils exhibit decreased neutrophil elastase activity and impaired phagocytic functions to GBS. Collectively, our studies demonstrate how a unique bacterial hemolytic lipid toxin enables GBS to circumvent neutrophils and NETs in placental membranes to induce fetal injury and preterm labor.

8.
Nat Med ; 22(11): 1256-1259, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27618651

RESUMEN

We describe the development of fetal brain lesions after Zika virus (ZIKV) inoculation in a pregnant pigtail macaque. Periventricular lesions developed within 10 d and evolved asymmetrically in the occipital-parietal lobes. Fetal autopsy revealed ZIKV in the brain and significant cerebral white matter hypoplasia, periventricular white matter gliosis, and axonal and ependymal injury. Our observation of ZIKV-associated fetal brain lesions in a nonhuman primate provides a model for therapeutic evaluation.


Asunto(s)
Encéfalo/diagnóstico por imagen , Feto/diagnóstico por imagen , Complicaciones Infecciosas del Embarazo/diagnóstico por imagen , Infección por el Virus Zika/diagnóstico por imagen , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/virología , Colina/metabolismo , Creatina/metabolismo , Ecoencefalografía , Femenino , Feto/metabolismo , Feto/patología , Feto/virología , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Inositol/metabolismo , Macaca nemestrina , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Embarazo , Complicaciones Infecciosas del Embarazo/metabolismo , Complicaciones Infecciosas del Embarazo/patología , ARN Viral/metabolismo , Ultrasonografía Prenatal , Virus Zika/genética , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...