RESUMEN
In an effort to understand the biological capability of polyphosphazene-based polymers, three-dimensional biomimetic bone scaffolds were fabricated using the blends of poly[(glycine ethylglycinato)75(phenylphenoxy)25]phosphazene (PNGEGPhPh) and poly(lactic-co-glycolic acid) (PLGA), and an in vivo evaluation was performed in a rabbit critical-sized bone defect model. The matrices constructed from PNGEGPhPh-PLGA blends were surgically implanted into 15 mm critical-sized radial defects of the rabbits as structural templates for bone tissue regeneration. PLGA, which is the most commonly used synthetic bone graft substitute, was used as a control in this study. Radiological and histological analyses demonstrated that PNGEGPhPh-PLGA blends exhibited favorable in vivo biocompatibility and osteoconductivity, as the newly designed matrices allowed new bone formation to occur without adverse immunoreactions. The X-ray images of the blends showed higher levels of radiodensity than that of the pristine PLGA, indicating higher rates of new bone formation and regeneration. Micro-computed tomography quantification revealed that new bone volume fractions were significantly higher for the PNGEGPhPh-PLGA blends than for the PLGA controls after 4 weeks. The new bone volume increased linearly with increasing time points, with the new tissues observed throughout the defect area for the blend and only at the implant site's extremes for the PLGA control. Histologically, the polyphosphazene system appeared to show tissue responses and bone ingrowths superior to PLGA. By the end of the study, the defects with PNGEGPhPh-PLGA scaffolds exhibited evidence of effective bone tissue ingrowth and minimal inflammatory responses. Thus, polyphosphazene-containing biomaterials have excellent translational potential for use in bone regenerative engineering applications.
Asunto(s)
Glicilglicina , Ácido Poliglicólico , Animales , Huesos , Ésteres , Glicoles , Ácido Láctico , Compuestos Organofosforados , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros , Conejos , Andamios del Tejido , Microtomografía por Rayos XRESUMEN
In the pursuit of continuous improvement in the area of biomaterial design, blends of mixed-substituent polyphosphazenes and poly (lactic acid-glycolic acid) (PLGA) were prepared, and their morphology of phase distributions for the first time was studied. The degradation mechanism and osteocompatibility of the blends were also evaluated for their use as regenerative materials. Poly [(ethyl phenylalanato)25(glycine ethyl glycinato)75phosphazene](PNEPAGEG) and poly [(glycine ethyl glycinato)75(phenylphenoxy)25phosphazene](PNGEGPhPh) were blended with PLGA at various weight ratios to yield different blends, namely PNEPAGEG-PLGA 25:75, PNEPAGEG-PLGA 50:50, PNGEGPhPh-PLGA 25:75, and PNGEGPhPh-PLGA 50:50. The molecular interactions, domain sizes, and phase distributions of the blends were confirmed by atomic force microscopy (AFM) as the PNEPAGEG-PLGA and PNGEGPhPh-PLGA blends showed different domain sizes and phase distributions. Due to the extensive hydrogen bonding within the two polymer components, PNEPAGEG-PLGA exhibited small-sized domains and well-distributed morphology. While for the PNGEGPhPh-PLGA blends, the presence of phenylphenol (PhPh) caused the formation of PLGA large-sized domains as the PLGA formed a continuous phase and PNGEGPhPh constituted a dispersed phase. In addition to AFM results, scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and Fourier transform infrared spectroscopy (FTIR) results demonstrated the miscibility of the blends. The PNEPAGEG-PLGA and PNGEGPhPh-PLGA blends presented in situ 3D interconnected porous structures upon degradation in phosphate-buffered saline (PBS) media at 37°C. However, the blends showed different mechanistic pathways to the formations of the pores. The difference in the erosion patterns could be attributed to the nature of molecular attractions that exist in the blends. Furthermore, the novel blends were able to support cell growth as compared to PLGA, and accommodate cell infiltrations, which ultimately augmented surface area for better cell-material interactions.
RESUMEN
The demand for new biomaterials in several biomedical applications, such as regenerative engineering and drug delivery, has increased over the past two decades due to emerging technological advances in biomedicine. Degradable polymeric biomaterials continue to play a significant role as scaffolding materials and drug devices. Polyphosphazene platform is a subject of broad interest, as it presents an avenue for attaining versatile polymeric materials with excellent structure and property tunability, and high functional diversity. Macromolecular substitution enables the facile attachment of different organic groups and drug molecules to the polyphosphazene backbone for the development of a broad class of materials. These materials are more biocompatible than traditional biomaterials, mixable with other clinically relevant polymers to obtain new materials and exhibit unique erosion with near-neutral degradation products. Hence, polyphosphazene represents the next generation of biomaterials. In this review, the authors systematically discuss the synthetic design, structure-property relationships, and the promising potentials of polyphosphazenes in regenerative engineering and drug delivery.
RESUMEN
Ever since the pioneering research efforts on their utility in biomedicine, polyphosphazene polymers have witnessed enormous growth and expansion in several biomedical applications due to their unique properties. The development of this exceptional biodegradable system with extraordinary design flexibility, property tunability and neutral bioactivity could stimulate an unprecedented paradigm in biomaterial design. Thus, polyphosphazenes are, undoubtedly, the next-generation biomaterials. This editorial provides a brief perspective on the promising prospects of polyphosphazene-based biomaterials for medical device technology, focusing mainly on the authors' work on this particular polymeric system.