Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944512

RESUMEN

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilación de la Expresión Génica , Proteómica , Saccharomyces cerevisiae/genética , Biología Sintética , ARN de Transferencia/genética , Cromosomas Artificiales de Levadura/genética
2.
ISME J ; 17(11): 2058-2069, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37723338

RESUMEN

Antibiotic resistance tends to carry fitness costs, making it difficult to understand how resistance can be maintained in the absence of continual antibiotic exposure. Here we investigate this problem in the context of mcr-1, a globally disseminated gene that confers resistance to colistin, an agricultural antibiotic that is used as a last resort for the treatment of multi-drug resistant infections. Here we show that regulatory evolution has fine-tuned the expression of mcr-1, allowing E. coli to reduce the fitness cost of mcr-1 while simultaneously increasing colistin resistance. Conjugative plasmids have transferred low-cost/high-resistance mcr-1 alleles across an incredible diversity of E. coli strains, further stabilising mcr-1 at the species level. Regulatory mutations were associated with increased mcr-1 stability in pig farms following a ban on the use of colistin as a growth promoter that decreased colistin consumption by 90%. Our study shows how regulatory evolution and plasmid transfer can combine to stabilise resistance and limit the impact of reducing antibiotic consumption.


Asunto(s)
Colistina , Proteínas de Escherichia coli , Animales , Porcinos , Colistina/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Bacterias/genética , Plásmidos/genética , Pruebas de Sensibilidad Microbiana
3.
Nat Commun ; 14(1): 4083, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438338

RESUMEN

Antibiotic resistance poses a global health threat, but the within-host drivers of resistance remain poorly understood. Pathogen populations are often assumed to be clonal within hosts, and resistance is thought to emerge due to selection for de novo variants. Here we show that mixed strain populations are common in the opportunistic pathogen P. aeruginosa. Crucially, resistance evolves rapidly in patients colonized by multiple strains through selection for pre-existing resistant strains. In contrast, resistance evolves sporadically in patients colonized by single strains due to selection for novel resistance mutations. However, strong trade-offs between resistance and growth rate occur in mixed strain populations, suggesting that within-host diversity can also drive the loss of resistance in the absence of antibiotic treatment. In summary, we show that the within-host diversity of pathogen populations plays a key role in shaping the emergence of resistance in response to treatment.


Asunto(s)
Pacientes , Humanos , Farmacorresistencia Microbiana/genética
4.
Proc Biol Sci ; 290(2002): 20230965, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37403511

RESUMEN

Women are underrepresented in senior academic positions within microbiology globally. Studies show that gender bias affects the progression of women in academia, but there is evidence that improving conscious awareness of bias can improve equity in this regard. Here we analyse the publication data associated with review articles within the microbiology field to investigate the statistical associations with author gender. We analyse the data from review articles published between 2010 and 2022 in three leading microbiology review journals: Nature Reviews Microbiology, Trends in Microbiology and Annual Review of Microbiology. We find a significant association between the gender of the lead author and the gender of co-authors in multi-author publications. Review articles with men lead authors have a significantly reduced proportion of women co-authors compared to reviews with women lead authors. Given the existing differences in the proportions of men and women in lead author positions, this association may have important consequences for the relative visibility of women in microbiology, along with negative impacts on scientific output relating to reduced collaboration diversity.


Asunto(s)
Autoria , Edición , Humanos , Masculino , Femenino , Sexismo , Estado de Conciencia
5.
Elife ; 122023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37094804

RESUMEN

Antimicrobial peptides (AMPs) offer a promising solution to the antibiotic resistance crisis. However, an unresolved serious concern is that the evolution of resistance to therapeutic AMPs may generate cross-resistance to host AMPs, compromising a cornerstone of the innate immune response. We systematically tested this hypothesis using globally disseminated mobile colistin resistance (MCR) that has been selected by the use of colistin in agriculture and medicine. Here, we show that MCR provides a selective advantage to Escherichia coli in the presence of key AMPs from humans and agricultural animals by increasing AMP resistance. Moreover, MCR promotes bacterial growth in human serum and increases virulence in a Galleria mellonella infection model. Our study shows how the anthropogenic use of AMPs can drive the accidental evolution of resistance to the innate immune system of humans and animals. These findings have major implications for the design and use of therapeutic AMPs and suggest that MCR may be difficult to eradicate, even if colistin use is withdrawn.


Asunto(s)
Infecciones Bacterianas , Proteínas de Escherichia coli , Animales , Humanos , Colistina , Virulencia , Péptidos Antimicrobianos , Farmacorresistencia Bacteriana , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Plásmidos
6.
Elife ; 112022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35943060

RESUMEN

Bacterial pathogens show high levels of chromosomal genetic diversity, but the influence of this diversity on the evolution of antibiotic resistance by plasmid acquisition remains unclear. Here, we address this problem in the context of colistin, a 'last line of defence' antibiotic. Using experimental evolution, we show that a plasmid carrying the MCR-1 colistin resistance gene dramatically increases the ability of Escherichia coli to evolve high-level colistin resistance by acquiring mutations in lpxC, an essential chromosomal gene involved in lipopolysaccharide biosynthesis. Crucially, lpxC mutations increase colistin resistance in the presence of the MCR-1 gene, but decrease the resistance of wild-type cells, revealing positive sign epistasis for antibiotic resistance between the chromosomal mutations and a mobile resistance gene. Analysis of public genomic datasets shows that lpxC polymorphisms are common in pathogenic E. coli, including those carrying MCR-1, highlighting the clinical relevance of this interaction. Importantly, lpxC diversity is high in pathogenic E. coli from regions with no history of MCR-1 acquisition, suggesting that pre-existing lpxC polymorphisms potentiated the evolution of high-level colistin resistance by MCR-1 acquisition. More broadly, these findings highlight the importance of standing genetic variation and plasmid/chromosomal interactions in the evolutionary dynamics of antibiotic resistance.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Antibacterianos/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Plásmidos/genética
7.
Trends Microbiol ; 29(12): 1058-1061, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33836929

RESUMEN

Antimicrobial peptides (AMPs) offer a potential solution to the antibiotic resistance crisis. Recent studies have revealed important evolutionary constraints on the evolution and horizontal spread of AMP resistance in bacteria. Here, we summarize these advances and highlight their importance for therapeutic development of AMPs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Bacterias , Farmacorresistencia Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA