Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cheminform ; 16(1): 63, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38831351

RESUMEN

Drug discovery is an intricate and costly process. Repurposing existing drugs and active compounds offers a viable pathway to develop new therapies for various diseases. By leveraging publicly available biomedical information, it is possible to predict compounds' activity and identify their potential targets across diverse organisms. In this study, we aimed to assess the antiplasmodial activity of compounds from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library using in vitro and bioinformatics approaches. We assessed the in vitro antiplasmodial activity of the compounds using blood-stage and liver-stage drug susceptibility assays. We used protein sequences of known targets of the ReFRAME compounds with high antiplasmodial activity (EC50 < 10 uM) to conduct a protein-pairwise search to identify similar Plasmodium falciparum 3D7 proteins (from PlasmoDB) using NCBI protein BLAST. We further assessed the association between the compounds' in vitro antiplasmodial activity and level of similarity between their known and predicted P. falciparum target proteins using simple linear regression analyses. BLAST analyses revealed 735 P. falciparum proteins that were similar to the 226 known protein targets associated with the ReFRAME compounds. Antiplasmodial activity of the compounds was positively associated with the degree of similarity between the compounds' known targets and predicted P. falciparum protein targets (percentage identity, E value, and bit score), the number of the predicted P. falciparum targets, and their respective mutagenesis index and fitness scores (R2 between 0.066 and 0.92, P < 0.05). Compounds predicted to target essential P. falciparum proteins or those with a druggability index of 1 showed the highest antiplasmodial activity.

2.
Malar J ; 23(1): 174, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38835069

RESUMEN

BACKGROUND: Severe malaria is a life-threatening infection, particularly affecting children under the age of 5 years in Africa. Current treatment with parenteral artemisinin derivatives is highly efficacious. However, artemisinin partial resistance is widespread in Southeast Asia, resulting in delayed parasite clearance after therapy, and has emerged independently in South America, Oceania, and Africa. Hence, new treatments for severe malaria are needed, and it is prudent to define their characteristics now. This manuscript focuses on the target product profile (TPP) for new treatments for severe malaria. It also highlights preparedness when considering ways of protecting the utility of artemisinin-based therapies. TARGET PRODUCT PROFILE: Severe malaria treatments must be highly potent, with rapid onset of antiparasitic activity to clear the infection as quickly as possible to prevent complications. They should also have a low potential for drug resistance selection, given the high parasite burden in patients with severe malaria. Combination therapies are needed to deter resistance selection and dissemination. Partner drugs which are approved for uncomplicated malaria treatment would provide the most rapid development pathway for combinations, though new candidate molecules should be considered. Artemisinin combination approaches to severe malaria would extend the lifespan of current therapy, but ideally, completely novel, non-artemisinin-based combination therapies for severe malaria should be developed. These should be advanced to at least phase 2 clinical trials, enabling rapid progression to patient use should current treatment fail clinically. New drug combinations for severe malaria should be available as injectable formulations for rapid and effective treatment, or as rectal formulations for pre-referral intervention in resource-limited settings. CONCLUSION: Defining the TPP is a key step to align responses across the community to proactively address the potential for clinical failure of artesunate in severe malaria. In the shorter term, artemisinin-based combination therapies should be developed using approved or novel drugs. In the longer term, novel combination treatments should be pursued. Thus, this TPP aims to direct efforts to preserve the efficacy of existing treatments while improving care and outcomes for individuals affected by this life-threatening disease.


Asunto(s)
Antimaláricos , Malaria , Antimaláricos/uso terapéutico , Humanos , Malaria/tratamiento farmacológico , Artemisininas/uso terapéutico , Resistencia a Medicamentos
3.
Am J Trop Med Hyg ; 110(6): 1069-1079, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38653233

RESUMEN

The Walter Reed Project is a collaboration between the Walter Reed Army Institute of Research of the United States Department of Defense and the Kenya Medical Research Institute. The Kisumu field station, comprising four campuses, has until recently been devoted primarily to research on malaria countermeasures. The Kombewa Clinical Research Center is dedicated to conducting regulated clinical trials of therapeutic and vaccine candidates in development. The center's robust population-based surveillance platform, along with an active community engagement strategy, guarantees consistent recruitment and retention of participants in clinical trials. The Malaria Diagnostic Center, backed by WHO-certified microscopists and a large malaria blood film collection, champions high-quality malaria diagnosis and strict quality assurance through standardized microscopy trainings. The Malaria Drug Resistance Laboratory leverages cutting-edge technology such as real-time Polymerase Chain Reaction (qPCR) to conduct comprehensive research on resistance markers and obtain information on drug efficacy. The laboratory has been working on validating artemisinin resistance markers and improving tracking methods for current and future antimalarial compounds. Finally, the Basic Science Laboratory employs advanced genomic technology to examine endpoints such as immunogenicity and genomic fingerprinting for candidate drugs and vaccine efficacy. Herein, we examine the site's significant contributions to malaria policy, management, and prevention practices in Kenya and around the world.


Asunto(s)
Malaria , Humanos , Malaria/prevención & control , Malaria/tratamiento farmacológico , Kenia/epidemiología , Antimaláricos/uso terapéutico , Estados Unidos , Política de Salud , Investigación Biomédica , United States Department of Defense , Resistencia a Medicamentos
4.
Heliyon ; 10(6): e26868, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38501019

RESUMEN

Artemisinin-based combinations (ACTs) are World Health Organization-recommended treatment for malaria. Artemether (A) and lumefantrine (LUM) were the first co-formulated ACT and first-line treatment for malaria globally, artemether is dihydroartemisinin's (DHA's) prodrug. Artemisinins and LUM face low aqueous solubility while artemisinin has low bioavailability and short half-life thus requiring continuous dosage to maintain adequate therapeutic drug-plasma concentration. This study aimed at improving ACTs limitations by nano-formulating DHA-LUM using solid lipid nanoparticles (SLNs) as nanocarrier. SLNs were prepared by modified solvent extraction method based on water-in-oil-in-water double emulsion. Mean particle size, polydispersity index and zeta potential were 308.4 nm, 0.29 and -16.0 mV respectively. Nanoencapsulation efficiencies and drug loading of DHA and LUM were 93.9%, 33.7%, 11.9%, and 24.10% respectively. Nanoparticles were spherically shaped and drugs followed Kors-Peppas release model, steadily released for over 72 h. DHA-LUM-SLNs were 31% more efficacious than conventional oral doses in clearing Plasmodium berghei from infected Swiss albino mice.

6.
Front Epidemiol ; 2: 852237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38455314

RESUMEN

Background: Plasmodium falciparum resistance to artemisinin-based combination therapies (ACTs) is a threat to malaria elimination. ACT-resistance in Asia raises concerns for emergence of resistance in Africa. While most data show high efficacy of ACT regimens in Africa, there have been reports describing declining efficacy, as measured by both clinical failure and prolonged parasite clearance times. Methods: Three hundred children aged 2-10 years with uncomplicated P. falciparum infection were enrolled in Kenya and Tanzania after receiving treatment with artemether-lumefantrine. Blood samples were taken at 0, 24, 48, and 72 h, and weekly thereafter until 28 days post-treatment. Parasite and host genetics were assessed, as well as clinical, behavioral, and environmental characteristics, and host anti-malarial serologic response. Results: While there was a broad range of clearance rates at both sites, 85% and 96% of Kenyan and Tanzanian samples, respectively, were qPCR-positive but microscopy-negative at 72 h post-treatment. A greater complexity of infection (COI) was negatively associated with qPCR-detectable parasitemia at 72 h (OR: 0.70, 95% CI: 0.53-0.94), and a greater baseline parasitemia was marginally associated with qPCR-detectable parasitemia (1,000 parasites/uL change, OR: 1.02, 95% CI: 1.01-1.03). Demographic, serological, and host genotyping characteristics showed no association with qPCR-detectable parasitemia at 72 h. Parasite haplotype-specific clearance slopes were grouped around the mean with no association detected between specific haplotypes and slower clearance rates. Conclusions: Identifying risk factors for slow clearing P. falciparum infections, such as COI, are essential for ongoing surveillance of ACT treatment failure in Kenya, Tanzania, and more broadly in sub-Saharan Africa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...