Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 269: 115912, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38181562

RESUMEN

In this study, we established a coculture model comprising human neuroblastoma SH-SY5Y cells and induced pluripotent stem cell-derived astrocytes, faithfully replicating the human brain environment for in vitro neurotoxicity assessment. We optimized the cell differentiation duration and cell ratios to obtain images conducive to neurite outgrowth evaluation. Subsequently, the neurotoxic effects in the coculture and monoculture of SH-SY5Y cells were confirmed using neurotoxic agents such as acrylamide (ACR) and hydrogen peroxide (H2O2). Disparities in the neurotoxic impacts of ACR and H2O2 within the coculture were mirrored in the expression of genes associated with early neuronal injury. Notably, the reduction in neurite outgrowth induced by neurotoxic agents revealed the coculture's lower sensitivity compared to monocultures. Furthermore, the coculture system exhibited distinct effects of test agents on nerve damage and manifested protective influences on nerve cells. The proposed methodology holds promise for large-scale chemical neurotoxicity screening through neurite change measurements. This in vitro coculture model, accounting for cell interactions, emerges as a valuable tool in toxicity testing, offering insights into the potential effects of chemicals within the human body.


Asunto(s)
Neuroblastoma , Síndromes de Neurotoxicidad , Humanos , Astrocitos , Técnicas de Cocultivo , Peróxido de Hidrógeno , Acrilamida/toxicidad
2.
J Hazard Mater ; 465: 133146, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38064952

RESUMEN

Poly(hexamethylenebicyanoguanide-hexamethylenediamine) hydrochloride (PHMB) is a biocide with a broad spectrum of antibacterial activity. Its use as a disinfectant and preservative in consumer products results in human exposure to PHMB. Toxicity studies on PHMB mainly focus on systemic toxicity or skin irritation; however, its effects on developmental neurotoxicity (DNT) and the underlying mechanisms are poorly understood. In this study, the DNT effects of PHMB were evaluated using IMR-32 and SH-SY5Y cell lines and zebrafish. In both cell lines, PHMB concentrations ≥ 10 µM reduced neurite outgrowth, and cytotoxicity was observed at concentrations up to 40 µM. PHMB regulated expression of neurodevelopmental genes and induced reactive oxygen species (ROS) production and mitochondrial dysfunction. Treatment with N-acetylcysteine reversed the toxic effects of PHMB. Toxicity tests on zebrafish embryos showed that PHMB reduced viability and heart rate and caused irregular hatching. PHMB concentrations of 1-4 µM reduced the width of the brain and spinal cord of transgenic zebrafish and attenuated myelination processes. Furthermore, PHMB modulated expression of neurodevelopmental genes in zebrafish and induced ROS accumulation. These results suggested that PHMB exerted DNT effects in vitro and in vivo through a ROS-dependent mechanism, highlighting the risk of PHMB exposure.


Asunto(s)
Diaminas , Desinfectantes , Neuroblastoma , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra/metabolismo , Neuroblastoma/metabolismo , Estrés Oxidativo , Desinfectantes/toxicidad , Embrión no Mamífero
3.
Sci Rep ; 13(1): 23060, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38155222

RESUMEN

Previous studies on copper pyrithione (CPT) and zinc pyrithione (ZPT) as antifouling agents have mainly focused on marine organisms. Even though CPT and ZPT pose a risk of human exposure, their neurotoxic effects remain to be elucidated. Therefore, in this study, the cytotoxicity and neurotoxicity of CPT and ZPT were evaluated after the exposure of human SH-SY5Y/astrocytic co-cultured cells to them. The results showed that, in a co-culture model, CPT and ZPT induced cytotoxicity in a dose-dependent manner (~ 400 nM). Exposure to CPT and ZPT suppressed all parameters in the neurite outgrowth assays, including neurite length. In particular, exposure led to neurotoxicity at concentrations with low or no cytotoxicity (~ 200 nM). It also downregulated the expression of genes involved in neurodevelopment and maturation and upregulated astrocyte markers. Moreover, CPT and ZPT induced mitochondrial dysfunction and promoted the generation of reactive oxygen species. Notably, N-acetylcysteine treatment showed neuroprotective effects against CPT- and ZPT-mediated toxicity. We concluded that oxidative stress was the major mechanism underlying CPT- and ZPT-induced toxicity in the co-cultured cells.


Asunto(s)
Neuroblastoma , Compuestos Organometálicos , Humanos , Astrocitos/metabolismo , Técnicas de Cocultivo , Estrés Oxidativo , Compuestos Organometálicos/toxicidad , Compuestos Organometálicos/metabolismo , Células Cultivadas
4.
Ecotoxicol Environ Saf ; 242: 113891, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35868176

RESUMEN

The genotoxicity, development toxicity, carcinogenicity, and acute or chronic toxic effects of glutaraldehyde (GA), particularly during occupational exposure through its use as a fixative, disinfectant, and preservative, are well-documented but its effects on neurotoxicity have not been investigated. We performed in vitro and in vivo studies to examine the developmental neurotoxicity (DNT) of GA. Neurite outgrowth was examined in an in vitro co-culture model consisting of SH-SY5Y human neuroblastoma cells and human astrocytes. Cell Counting Kit-8, lactate dehydrogenase assay, and high-content screening revealed that GA significantly inhibited neurite outgrowth at non-cytotoxic concentration. Further studies showed that GA upregulated the mRNA expression of the astrocyte markers GFAP and S100ß and downregulated the expression of the neurodevelopmental genes Nestin, ßIII-tubulin, GAP43, and MAP2. Furthermore, in vivo zebrafish embryo toxicity tests explored the effects of GA on neural morphogenesis. GA adversely affected the early development of zebrafish embryos, resulting in decreased survival, irregular hatching, and reduced heart rate in a time- and concentration-dependent manner. Furthermore, the width of the brain and spinal cord was reduced, and the myelination of Schwann cells and oligodendrocytes was decreased by GA in transgenic zebrafish lines. These data suggest that GAs have potential DNT in vitro and in vivo, highlighting the need for caution regarding the neurotoxicity of GA.


Asunto(s)
Neuroblastoma , Síndromes de Neurotoxicidad , Animales , Astrocitos , Células Cultivadas , Técnicas de Cocultivo , Glutaral/farmacología , Humanos , Neuronas , Pez Cebra
5.
Toxicol In Vitro ; 84: 105449, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35872077

RESUMEN

Biocidal disinfectants (BDs) that kill microorganisms or pathogens are widely used in hospitals and other healthcare fields. Recently, the use of BDs has rapidly increased as personal hygiene has become more apparent owing to the pandemic, namely the coronavirus outbreak. Despite frequent exposure to BDs, toxicity data of their potential neurotoxicity (NT) are lacking. In this study, a human-derived SH-SY5Y/astrocyte was used as a co-culture model to evaluate the chemical effects of BDs. Automated high-content screening was used to evaluate the potential NT of BDs through neurite growth analysis. A set of 12 BD substances classified from previous reports were tested. Our study confirms the potential NT of benzalkonium chloride (BKC) and provides the first evidence of the potential NT of poly(hexamethylenebicyanoguanide-hexamethylenediamine) hydrochloride (PHMB). BKC and PHMB showed significant NT at concentrations without cytotoxicity. This test system for analyzing the potential NT of BDs may be useful in early screening studies for NT prior to starting in vivo studies.


Asunto(s)
Desinfectantes , Neuroblastoma , Síndromes de Neurotoxicidad , Astrocitos , Compuestos de Benzalconio/toxicidad , Técnicas de Cocultivo , Desinfectantes/toxicidad , Humanos , Neuronas
6.
J Microbiol Biotechnol ; 31(4): 559-569, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33746190

RESUMEN

As one of the major types of lung cancer, non-small cell lung cancer (NSCLC) accounts for the majority of cancer-related deaths worldwide. Treatments for NSCLC includes surgery, chemotherapy, and targeted therapy. Among the targeted therapies, resistance to inhibitors of the epidermal growth factor receptor (EGFR) is common and remains a problem to be solved. MET (hepatocyte growth factor receptor) amplification is one of the major causes of EGFR-tyrosine kinase inhibitor (TKI) resistance. Therefore, there exists a need to find new and more efficacious therapies. Deoxypodophyllotoxin (DPT) extracted from Anthriscus sylvestris roots exhibits various pharmacological activities including anti-inflammation and anti-cancer effects. In this study we sought to determine the anti-cancer effects of DPT on HCC827GR cells, which are resistant to gefitinib (EGFR-TKI) due to regulation of EGFR and MET and their related signaling pathways. To identify the direct binding of DPT to EGFR and MET, we performed pull-down, ATP-binding, and kinase assays. DPT exhibited competitive binding with ATP against the network kinases EGFR and MET and reduced their activities. Also, DPT suppressed the expression of p-EGFR and p-MET as well as their downstreat proteins p-ErbB3, p-AKT, and p-ERK. The treatment of HCC827GR cells with DPT induced high ROS generation that led to endoplasmic-reticulum stress. Accordingly, loss of mitochondrial membrane potential and apoptosis by multi-caspase activation were observed. In conclusion, these results demonstrate the apoptotic effects of DPT on HCC827GR cells and signify the potential of DPT to serve as an adjuvant anti-cancer drug by simultaneously inhibiting EGFR and MET.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/patología , Medicamentos Herbarios Chinos/farmacología , Neoplasias Pulmonares/patología , Podofilotoxina/análogos & derivados , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Antineoplásicos/farmacología , Apiaceae/química , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/antagonistas & inhibidores , Gefitinib , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Podofilotoxina/farmacología , Transducción de Señal
7.
Chemosphere ; 277: 130330, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33780678

RESUMEN

Biocidal products are broadly used in homes and industries. However, the safety of biocidal active substances (BASs) is not yet fully understood. In particular, the neurotoxic action of BASs needs to be studied as diverse epidemiological studies have reported associations between exposure to BASs and neural diseases. In this study, we developed in silico models to predict the blood-brain barrier (BBB) permeation of organic and inorganic BASs. Due to a lack of BBB data for BASs, the chemical space of BASs and BBB dataset were compared in order to select BBB data that were structurally similar to BASs. In silico models to predict log-scaled BBB penetration were developed using support vector regression for organic BASs and multiple linear regression for inorganic BASs. The model for organic BASs was developed with 231 compounds (training set: 153 and test set: 78) and achieved good prediction accuracy on an external test set (R2 = 0.64), and the model outperformed the model for pharmaceuticals. The model for inorganic BASs was developed with 11 compounds (R2 = 0.51). Applicability domain (AD) analysis of the models clarified molecular structures reliably predicted by the models. Therefore, the models developed in this study can be used for predicting BBB permeable BASs in human. These models were developed according to the Quantitative Structure-Activity Relationship validation principles proposed by the Organization for Economic Cooperation and Development.


Asunto(s)
Barrera Hematoencefálica , Relación Estructura-Actividad Cuantitativa , Transporte Biológico , Simulación por Computador , Humanos , Permeabilidad
8.
Phytomedicine ; 80: 153355, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33039730

RESUMEN

BACKGROUND: Lung cancer has the highest incidence and cancer-related mortality of all cancers worldwide. Its treatment is focused on molecular targeted therapy. c-MET plays an important role in the development and metastasis of various human cancers and has been identified as an attractive potential anti-cancer target. Podophyllotoxin (PPT), an aryltetralin lignan isolated from the rhizomes of Podophyllum species, has several pharmacological activities that include anti-viral and anti-cancer effects. However, the mechanism of the anti-cancer effects of PPT on gefitinib-sensitive (HCC827) or -resistant (MET-amplified HCC827GR) non-small cell lung cancer (NSCLC) cells remains unexplored. PURPOSE: In the present study, we investigated the underlying mechanisms of PPT-induced apoptosis in NSCLC cells and found that the inhibition of c-MET kinase activity contributed to PPT-induced cell death. METHODS: The regulation of c-MET by PPT was examined by pull-down assay, ATP-competitive binding assay, kinase activity assay, molecular docking simulation, and Western blot analysis. The cell growth inhibitory effects of PPT on NSCLC cells were assessed using the MTT assay, soft agar assay, and flow cytometry analysis. RESULTS: PPT could directly interact with c-MET and inhibit kinase activity, which further induced the apoptosis of HCC827GR cells. In contrast, PPT did not significantly affect EGFR kinase activity. PPT significantly inhibited the cell viability of HCC827GR cells, whereas the PPT-treated HCC827 cells showed a cell viability of more than 80%. PPT dose-dependently induced G2/M cell cycle arrest, as shown by the downregulation of cyclin B1 and cdc2, and upregulation of p27 expression in HCC827GR cells. Furthermore, PPT treatment induced Bad expression and downregulation of Mcl-1, survivin, and Bcl-xl expression, subsequently activating multi-caspases. PPT thereby induced caspase-dependent apoptosis in HCC827GR cells. CONCLUSION: These results suggest the potential of PPT as a c-MET inhibitor to overcome tyrosine kinase inhibitor resistance in lung cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Podofilotoxina/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/genética , Gefitinib/farmacología , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Podofilotoxina/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/química , Proteínas Proto-Oncogénicas c-met/metabolismo
9.
Phytother Res ; 34(8): 2032-2043, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32144852

RESUMEN

Esophageal cancer (EC) is one of the leading causes to cancer death in the worldwide and major population of EC is esophageal squamous cell carcinoma (ESCC). Still, ESCC-targeted therapy has not been covered yet. In the present study we have identified that Licochalcone B (Lico B) inhibited the ESCC growth by directly blocking the Janus kinase (JAK) 2 activity and its downstream signaling pathway. Lico B suppressed KYSE450 and KYSE510 ESCC cell growth, arrested cell cycle at G2/M phase and induced apoptosis. Direct target of Lico B was identified by kinase assay and verified with in vitro and ex vivo binding. Computational docking model predicted for Lico B interaction to ATP-binding pocket of JAK2. Furthermore, treatment of JAK2 clinical medicine AZD1480 to ESCC cells showed similar tendency with Lico B. Thus, JAK2 downstream signaling proteins phosphorylation of STAT3 at Y705 and S727 as well as STAT3 target protein Mcl-1 expression was decreased with treatment of Lico B. Our results suggest that Lico B inhibits ESCC cell growth, arrests cell cycle and induces apoptosis, revealing the underlying mechanism involved in JAK2/STAT3 signaling pathways after Lico B treatment. It might provide potential role of Lico B in the treatment of ESCC.


Asunto(s)
Chalconas/uso terapéutico , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Janus Quinasa 2/antagonistas & inhibidores , Apoptosis , Línea Celular Tumoral , Chalconas/farmacología , Carcinoma de Células Escamosas de Esófago/patología , Humanos
10.
Biomolecules ; 10(2)2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32070026

RESUMEN

Licochalcone D (LCD), a flavonoid isolated from a Chinese medicinal plant Glycyrrhizainflata, has a variety of pharmacological activities. However, the anti-cancer effects of LCD on non-small cell lung cancer (NSCLC) have not been investigated yet. The amplification of MET (hepatocyte growth factor receptor) compensates for the inhibition of epidermal growth factor receptor (EGFR) activity due to tyrosine kinase inhibitor (TKI), leading to TKI resistance. Therefore, EGFR and MET can be attractive targets for lung cancer. We investigated the anti-proliferative and apoptotic effects of LCD in lung cancer cells HCC827 (gefitinib-sensitive) and HCC827GR (gefitinib-resistant) through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, pull-down/kinase assay, cell cycle analysis, Annexin-V/7-ADD staining, reactive oxygen species (ROS) assay, mitochondrial membrane potential (MMP) assay, multi-caspase assay, and Western blot analysis. The results showed that LCD inhibited phosphorylation and the kinase activity of EGFR and MET. In addition, the predicted pose of LCD was competitively located at the ATP binding site. LCD suppressed lung cancer cells growth by blocking cell cycle progression at the G2/M transition and inducing apoptosis. LCD also induced caspases activation and poly (ADP-ribose) polymerase (PARP) cleavage, thus displaying features of apoptotic signals. These results provide evidence that LCD has anti-tumor effects by inhibiting EGFR and MET activities and inducing ROS-dependent apoptosis in NSCLC, suggesting that LCD has the potential to treat lung cancer.


Asunto(s)
Chalconas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chalconas/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Receptores ErbB/metabolismo , Gefitinib/farmacología , Humanos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
11.
J Chemother ; 32(3): 132-143, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32009586

RESUMEN

Along with changes in dietary habits and lifestyle, the incidence of esophageal cancer is increasing around the world. Since chemotherapy for esophageal cancer has significant side effects, phytochemicals have attracted attention as an alternative medicine. Licochalcone C (LCC) is a flavonoid compound extracted from Licorice, with a variety of clinical uses including anti-cancer, anti-inflammatory and anti-oxidant effects. Treatment with LCC for 48 h significantly decreased cell viability of esophageal squamous cell carcinoma (ESCC) cells in a dose- and time-dependent manner with IC50 values of 28 µM (KYSE 30), 36 µM (KYSE 70), 19 µM (KYSE 410), 28 µM (KYSE 450) and 26 µM (KYSE 510). LCC induced G1 arrest accompanied by decreased cyclin D1 expression and an increase in the levels of p21 and p27. LCC increased the levels of intracellular ROS, cytochrome C release, and multi-caspase activity, and decreased mitochondrial membrane potential. LCC induced the protein expression of ER stress markers (GRP78 and CHOP) and phosphorylation JNK, c-Jun and p38. We investigated the expression of pro-apoptotic and anti-apoptotic proteins to elucidate the mechanism of apoptosis. Our findings contribute to the understanding of apoptosis mechanism underlying LCC in ESCC cells and provide new insights into the potential clinical opportunities of LCC for ESCC treatment.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Chalconas/farmacología , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Fase G1/efectos de los fármacos , Antineoplásicos/administración & dosificación , Caspasas/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chalconas/administración & dosificación , Citocromos c/biosíntesis , Relación Dosis-Respuesta a Droga , Chaperón BiP del Retículo Endoplásmico , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno , Factores de Tiempo
12.
Phytother Res ; 34(2): 388-400, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31698509

RESUMEN

Patients with non-small-cell lung cancer (NSCLC) containing epidermal growth factor receptor (EGFR) amplification or sensitive mutations initially respond to tyrosine kinase inhibitor gefitinib; however, the treatment is less effective over time. Gefitinib resistance mechanisms include MET gene amplification. A therapeutic strategy targeting MET as well as EGFR can overcome resistance to gefitinib. In the present study we identified Echinatin (Ecn), a characteristic chalcone in licorice, which inhibited both EGFR and MET and strongly altered NSCLC cell growth. The antitumor efficacy of Ecn against gefitinib-sensitive or -resistant NSCLC cells with EGFR mutations and MET amplification was confirmed by suppressing cell proliferation and anchorage-independent colony growth. During the targeting of EGFR and MET, Ecn significantly blocked the kinase activity, which was validated with competitive ATP binding. Inhibition of EGFR and MET by Ecn decreases the phosphorylation of downstream target proteins ERBB3, AKT and ERK compared with total protein expression or control. Ecn induced the G2/M cell cycle arrest, and apoptosis via the intrinsic pathway of caspase-dependent activation. Ecn induced ROS production and GRP78, CHOP, DR5 and DR4 expression as well as depolarized the mitochondria membrane potential. Therefore, our results suggest that Ecn is a promising therapeutic agent in NSCLC therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Chalconas/farmacología , Gefitinib/farmacología , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Chaperón BiP del Retículo Endoplásmico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Glycyrrhiza/química , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Raíces de Plantas/química , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-met/genética , Quinazolinas/farmacología
13.
Cell Biochem Biophys ; 78(1): 65-76, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31707583

RESUMEN

Esophageal cancer is one of the malignant cancers with a low 5-year survival rate. Licochalcone (LC) H, a chemically synthesized substance, is a regioisomer of LCC extracted from licorice. The purpose of this study was to determine whether LCH might have anticancer effect on human esophageal squamous cell carcinoma (ESCC) cell lines via apoptosis signaling pathway. After 48 h of treatment, IC50 of LCH in KYSE 30, KYSE 70, KYSE 410, KYSE 450, and KYSE 510 cells were 15, 14, 18, 15, and 16 µM, respectively. This study demonstrated that LCH potently suppressed proliferation of ESCC cells in a concentration- and time-dependent manner. LCH triggered G2/M-phase arrest by modulating expression levels of cdc2, cyclin B1, p21, and p27. LCH also induced apoptosis of ESCC cells through reactive oxygen species-mediated endoplasmic reticulum (ER) stress via JNK/p38 activation pathways. The anticancer effect of LCH was associated with ER stress and mitochondrial dysfunction. It also affected protein levels of Mcl-1, tBid, Bax, Bcl-2, cytochrome c, Apaf-1, PARP, cleaved-PARP, and ER stress-related proteins (GRP78 and CHOP). Our findings provide the first demonstration that LCH has anticancer effect on ESCC. Thus, LCH might have potential for preventing and/or treating human ESCC.


Asunto(s)
Apoptosis , Chalconas/química , Glycyrrhiza/química , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Chalconas/síntesis química , Chalconas/aislamiento & purificación , Chalconas/farmacología , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Glycyrrhiza/metabolismo , Humanos , Quinasas Janus/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Molecules ; 24(22)2019 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-31717502

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a poor prognostic cancer with a low five-year survival rate. Echinatin (Ech) is a retrochalone from licorice. It has been used as a herbal medicine due to its anti-inflammatory and anti-oxidative effects. However, its anticancer activity or underlying mechanism has not been elucidated yet. Thus, the objective of this study was to investigate the anti-tumor activity of Ech on ESCC by inducing ROS and ER stress dependent apoptosis. Ech inhibited ESCC cell growth in anchorage-dependent and independent analysis. Treatment with Ech induced G2/M phase of cell cycle and apoptosis of ESCC cells. It also regulated their related protein markers including p21, p27, cyclin B1, and cdc2. Ech also led to phosphorylation of JNK and p38. Regarding ROS and ER stress formation associated with apoptosis, we found that Ech increased ROS production, whereas its increase was diminished by NAC treatment. In addition, ER stress proteins were induced by treatment with Ech. Moreover, Ech enhanced MMP dysfunction and caspases activity. Furthermore, it regulated related biomarkers. Taken together, our results suggest that Ech can induce apoptosis in human ESCC cells via ROS/ER stress generation and p38 MAPK/JNK activation.


Asunto(s)
Apoptosis/genética , Chalconas/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neoplasias Esofágicas/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Molecules ; 24(18)2019 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-31500323

RESUMEN

In the present study, various extracts of C. tricuspidata fruit were prepared with varying ethanol contents and evaluated for their biomarker and biological properties. The 80% ethanolic extract showed the best tyrosinase inhibitory activity, while the 100% ethanolic extract showed the best total phenolics and flavonoids contents. The HPLC method was applied to analyze the chlorogenic acid in C. tricuspidata fruit extracts. The results suggest that the observed antioxidant and tyrosinase inhibitory activity of C. tricuspidata fruit extract could partially be attributed to the presence of marker compounds in the extract. In this study, we present an analytical method for standardization and optimization of C. tricuspidata fruit preparations. Further investigations are warranted to confirm the in vivo pharmacological activity of C. tricuspidata fruit extract and its active constituents and assess the safe use of the plant for the potential development of the extract as a skin depigmentation agent.


Asunto(s)
Antioxidantes/farmacología , Ácido Clorogénico/farmacología , Inhibidores Enzimáticos/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Moraceae/química , Antioxidantes/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ácido Clorogénico/química , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos/química , Flavonoides/aislamiento & purificación , Frutas/química , Humanos , Fenoles/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación
16.
Phytomedicine ; 63: 153014, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31323446

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) gene alterations are associated with sensitization to tyrosine kinase inhibitors such as gefitinib in lung cancer. Some patients suffering from non-small cell lung cancer (NSCLC) have difficulty in treating the cancer due to resistance acquired to gefitinib with MET amplification. Therefore EGFR and MET may be attractive targets for lung cancer therapy. PURPOSE: This study aimed to investigate the anti-cancer activity of Licochalcone (LC)B extracted from Glycyrrhiza inflata, in gefitinib-sensitive or gefitinib-resistant NSCLC cells, and to define its mechanisms. STUDY DESIGN: We investigated the mechanism of action of LCB by targeting EGFR and MET in human NSCLC cells. METHODS: We used the HCC827 and HCC827GR lines as gefitinib-sensitive and -resistant cells respectively, and determined the effects of LCB on both, by performing cell proliferation assay, flow cytometry analysis and Western blotting. Targets of LCB were identified by pull-down/kinase assay and molecular docking simulation. RESULTS: LCB inhibited both EGFR and MET kinase activity by directly binding to their ATP-binding pockets. The ability of this interaction was verified by computational docking and molecular dynamics simulations. LCB suppressed viability and colony formation of both HCC827 and HCC827GR cells while exhibiting no cytotoxicity to normal cells. The induction of G2/M cell-cycle arrest and apoptosis by LCB was confirmed by Annexin V/7-AAD double staining, ER stress and reactive oxygen species induction, mitochondrial membrane potential loss and caspase activation as well as related-proteins regulation. Inhibition of EGFR and MET by LCB decreased ERBB3 and AKT axis activation. CONCLUSION: We provide insights into the LCB-mediated mechanisms involved in reducing cell proliferation and inducing apoptosis in NSCLC cells. This occurs through dual inhibition of EGFR and MET in NSCLC cells regardless of their sensitivity or resistance to gefitinib. LCB may be a promising novel therapeutic medicine for gefitinib-sensitive or resistant NSCLC treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Chalconas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-met/metabolismo , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chalconas/química , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/química , Receptores ErbB/metabolismo , Gefitinib/farmacología , Glycyrrhiza/química , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Especies Reactivas de Oxígeno/metabolismo
17.
Phytomedicine ; 52: 60-69, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30599913

RESUMEN

BACKGROUND: Licochalconce (LC) H is an artificial compound in the course of synthesizing LCC in 2013. So far, few studies on the effects of LCH have been found in the literature. Despite progress in treatment modalities for oral cancer, the cure from cancer has still limitations. PURPOSE: The effects of LCH were investigated on human oral squamous cell carcinoma (OSCC) cells to elucidate its mechanisms. STUDY DESIGN: We explored the mechanism of action of LCH by which it could have effects on JAK2/STAT3 signaling pathway. METHODS: To confirm LCH anti-cancer effect, analyzed were MTT assay, DAPI staining, soft agar, kinase assay, molecular docking simulation, flow cytometry and Western blotting analysis. RESULTS: According to docking and molecular dynamics simulations, the predicted pose of the complex LCH and JAK2 seems reasonable and LCH is strongly bound to active JAK2 with opened activation loop. The LCH inhibitor is surrounded by specific ATP-binding pocket in which it is stabilized by forming hydrogen bonds and hydrophobic interactions. It is shown that LCH plays as a competitive inhibitor in an active state of JAK2. LCH caused a dose-dependent decrease in phosphorylation of JAK2 and STAT3. More interestingly, LCH suppressed JAK2 kinase activity in vitro by its direct binding to the JAK2. LCH significantly inhibited the JAK2/STAT3 signaling pathway, causing the down-regulation of target genes such as Bcl-2, survivin, cyclin D1, p21 and p27. In addition, LCH inhibited cell proliferation and colony formation of OSCC cells in a dose- and time-dependent manner, as well as induction of cell apoptosis through extrinsic and intrinsic pathway. The induction of apoptosis in OSCC cells by LCH was evident in the increased production of ROS, loss of mitochondrial membrane potential, release of cyto c, variation of apoptotic proteins and activation of caspase cascade. CONCLUSION: LCH not only induces apoptosis in OSCC cells through the JAK/STAT3 signaling pathway but also inhibits cell growth. It is proposed that LCH has a promising use for the chemotherapeutic agent of oral cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/patología , Chalconas/farmacología , Janus Quinasa 2/metabolismo , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Caspasas/metabolismo , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chalconas/química , Ciclina D1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Simulación del Acoplamiento Molecular , Neoplasias de la Boca/tratamiento farmacológico , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Survivin/metabolismo
18.
Oncol Rep ; 41(1): 333-340, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30320347

RESUMEN

Licochalcone H (LCH) is a chemical compound that is a positional isomer of licochalcone C (LCC), a chalconoid isolated from the root of Glycyrrhiza inflata, which has various pharmacological properties including anti­inflammatory, antioxidant, antitumor, and anticancer effects. However, the efficacy of LCH on cancer cells has not been investigated. The present study examined the effects of LCH on cell proliferation, induction of apoptosis, and the regulation of matrin 3 (Matr3) protein in oral squamous cell carcinoma (OSCC) cells by Annexin V/propidium iodide (PI) staining and western blot analysis. LCH reduced cell viability and colony forming ability, and induced cell cycle arrest and apoptosis in HSC2 and HSC3 cells through the suppression of Matr3. It was also found that LCH directly bound to Matr3 in a Sepharose 4B pull­down assay. Consequently, the results of the present study suggest that LCH may be used as an anticancer drug in combination with conventional chemotherapy for the treatment of OSCC, and that Matr3 may be a potential effective therapeutic target.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Células Escamosas/metabolismo , Chalconas/farmacología , Neoplasias de la Boca/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética
19.
J Cell Physiol ; 234(2): 1780-1793, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30070696

RESUMEN

Licochalcone (LC) families have been reported to have a wide range of biological function such as antioxidant, antibacterial, antiviral, and anticancer effects. Although various beneficial effects of LCD were revealed, its anticancer effect in human oral squamous cancer has not been identified. To examine the signaling pathway of LCD's anticancer effect, we determined whether LCD has physical interaction with Janus kinase (JAK2)/signal transducer and activator of transcription-3 (STAT3) signaling, which is critical in promoting cancer cell survival and proliferation. Our results demonstrated that LCD inhibited the kinase activity of JAK2, soft agar colony formation, and the proliferation of HN22 and HSC4 cells. LCD also induced mitochondrial apoptotic events such as altered mitochondrial membrane potential and reactive oxygen species production. LCD increased the expression of apoptosis-associated proteins in oral squamous cell carcinoma (OSCC) cells. Finally, the xenograft study showed that LCD significantly inhibited HN22 tumor growth. Immunohistochemical data supported that LCD suppressed p-JAK2 and p-STAT3 expression and induced cleaved-caspase-3 expression. These results indicate that the anticancer effect of LCD is due to the direct targeting of JAK2 kinase. Therefore, LCD can be used for therapeutic application against OSCC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Chalconas/farmacología , Janus Quinasa 2/antagonistas & inhibidores , Inhibidores de las Cinasas Janus/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Janus Quinasa 2/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Terapia Molecular Dirigida , Neoplasias de la Boca/enzimología , Neoplasias de la Boca/patología , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/enzimología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
J Cell Biochem ; 119(12): 10118-10130, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30129052

RESUMEN

Oral cancer is of an aggressive malignancy that arises on oral cavity and lip, 90% of cancers histologically originated in the squamous cells. Licochalcone (LC)C has been known as natural phenolic chalconoid substances, and its origin is the root of Glycyrrhiza glabra or Glycyrrhiza inflata. LCC inhibited oral squamous cell carcinoma (OSCC) cell viability, mitochondrial function, and anchorage-independent growth in a dose-dependent manner. To investigate the ability of LCC to target Janus kinase 2 (JAK2), we performed pull-down binding assay, kinase assay, and docking simulation. The molecular docking studies were performed between JAK2 and the potent inhibitor LCC. It was shown that LCC tightly interacted with ATP-binding site of JAK2. In addition, LCC inhibited the JAK2/signal transducer and activator of transcription 3 pathway, upregulated p21, and downregulated Bcl-2, Mcl-1, and Survivin, while it disrupted mitochondrial membrane potential and subsequently caused cytochrome c release with activation of multi-caspase, eventually leading to apoptosis in HN22 and HSC4 cells. LCC elevated the protein levels of Bax, cleaved Bid and PARP, and increased Apaf-1, and this effect was reversed by LCC treatment. Our results demonstrated that treatment of OSCC cells with LCC induced the death receptor (DR)4 and DR5 expression level with the generation of reactive oxygen species and the upregulation of CHOP protein expression. Taken together, these results could provide the basis for clinical application as a new therapeutic strategy in the treatment of oral cancer.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Chalconas/farmacología , Janus Quinasa 2/genética , Neoplasias de la Boca/tratamiento farmacológico , Factor de Transcripción STAT3/genética , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Simulación del Acoplamiento Molecular , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...