Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37570128

RESUMEN

This study explores the application of ultrasonic vibration during plasma electrolytic oxidation (PEO) to enhance the corrosion resistance of magnesium (Mg) alloy. To this end, three different ultrasonic frequencies of 0, 40, and 135 kHz were utilized during PEO. In the presence of ultrasonic waves, the formation of a uniform and dense oxide layer on Mg alloys is facilitated. This is achieved through plasma softening, acoustic streaming, and improved mass transport for successful deposition and continuous reforming of the oxide layer. The oxide layer exhibits superior protective properties against corrosive environments due to the increase in compactness. Increasing ultrasonic frequency from 40 to 135 kHz, however, suppresses the optimum growth of the oxide layer due to the occurrence of super-soft plasma swarms, which results in a low coating thickness. The integration of ultrasonic vibration with PEO presents a promising avenue for practical implementation in industries seeking to enhance the corrosion protection of Mg alloys, manipulating microstructures and composition.

2.
Materials (Basel) ; 16(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37241394

RESUMEN

This investigation studied the effect of reduction sequence during rolling of ferritic stainless steel on texture and anisotropy. A series of thermomechanical processes were performed on the present samples utilizing rolling deformation, with a total height reduction of 83% but with different reduction sequences, 67% + 50% (route A) and 50% + 67% (route B). Microstructural analysis showed that no significant difference was found in terms of the grain morphology between route A and route B. In terms of the texture, as compared to route A, route B developed a sharper texture on all components along the γ-fiber and a considerably higher fraction of boundaries that displayed 38°111 misorientations with respect to the surrounding deformed grains. In consequence, optimal deep drawing properties were achieved, where rm was maximized and Δr was minimized. Moreover, despite the similar morphology between the two processes, the resistance toward ridging was improved in the case of route B. This was explained in relation to the selective growth-controlled recrystallization, which favors the formation of microstructure with homogeneous distribution of the <111>//ND orientation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...