Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 10(3)2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182890

RESUMEN

Immune response is a necessary self-defense mechanism that protects the host from infectious organisms. Many medicinal plants are popularly used in Asian folk medicine to increase body resistance. An herbal formulation named KM1608 was prepared from three medicinal plants: Saussurea lappa, Terminalia chebula, and Zingiber officinale. In this study, we evaluated the immune stimulatory effect of KM1608 on RAW 264.7 murine macrophages. Network pharmacological analyses were used to predict potential immune response pathways of major compounds from KM1608. The cytotoxicity and immuno-stimulating effect of KM1608 were determined using cell viability and nitric oxide assays. The underlying mechanism of immunomodulatory activity was evaluated by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) of pro-inflammatory cytokines. The results of network pharmacological analysis suggested that major compounds from KM1608 possess anticancer potential via immune signaling pathways. After treatment with KM1608 at 25-100 µg/mL for 24 h, the level of nitric oxide was increased in the dose-dependent manner. The results of quantitative real-time PCR showed that KM1608 stimulates the expression of immune cytokines (interferon (IFN)-α, -ß, IL-1ß, -6, IL-10, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2)) in macrophages. KM1608 extract is a potential agent for immune response enhancement.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Regulación de la Expresión Génica , Macrófagos/inmunología , Extractos Vegetales/farmacología , Plantas Medicinales/química , Transducción de Señal , Adyuvantes Inmunológicos/química , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Ratones , Monocinas/inmunología , Óxido Nítrico Sintasa de Tipo II/inmunología , Extractos Vegetales/química , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
2.
Biomolecules ; 9(11)2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31752216

RESUMEN

This study was conducted to evaluate the biological activities of Pueraria lobata (PL) on menopause-related metabolic diseases and to explore the underlying mechanism of PL by network pharmacological analyses. We used ovariectomized (OVX) rats as a postmenopausal model and administered PL at different doses (50, 100, and 200 mg/kg). In OVX rats, decreased uterine weights and PPAR-γ (peroxisome proliferator-activated receptor-gamma) mRNA expression in the thigh muscle were significantly recovered after PL administration. PL also significantly alleviated OVX-induced increases in total cholesterol, triglyceride, alanine aminotransferase (ALT/GPT), and aspartate aminotransferase (AST/GOT) levels. To identify the systems-level mechanism of PL, we performed network pharmacological analyses by predicting the targets of the potential bioactive compounds and their associated pathways. We identified 61 targets from four potential active compounds of PL: formononetin, beta-sitosterol, 3'-methoxydaidzein, and daidzein-4,7-diglucoside. Pathway enrichment analysis revealed that among female sex hormone-related pathways, the estrogen signaling pathways, progesterone-mediated oocyte maturation, oxytocin signaling pathways, and prolactin signaling pathways were associated with multiple targets of PL. In conclusion, we found that PL improved various indicators associated with lipid metabolism in the postmenopausal animal model, and we also identified that its therapeutic effects are exerted via multiple female sex hormone-related pathways.


Asunto(s)
Enfermedades Metabólicas , Ovariectomía , Extractos Vegetales , Posmenopausia/metabolismo , Pueraria/química , Animales , Evaluación Preclínica de Medicamentos , Femenino , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley
3.
Clin Endosc ; 50(6): 609-613, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28793394

RESUMEN

Acute renal failure can be the result of acute renal cortical necrosis (RCN), which commonly occurs from complications occurring during pregnancy. RCN is rarely caused by medications, although tranexamic acid, which is used in patients with acute bleeding for its antifibrinolytic effects, reportedly causes acute RCN in rare cases. An 82-year-old woman experienced gastrointestinal bleeding after endoscopic papillectomy of an ampullary adenoma. The bleeding was controlled with tranexamic acid administration; however, 4 days later, her urine volume decreased and she developed pulmonary edema and dyspnea. Serum creatinine levels increased from 0.8 to 3.9 mg/dL and dialysis was performed. Abdominal pelvic computed tomography with contrast enhancement revealed bilateral RCN with no renal cortex enhancement. Renal dysfunction and oliguria persisted and hemodialysis was continued. Clinicians must be aware that acute RCN can occur after tranexamic acid administration to control bleeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...