Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6225, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043671

RESUMEN

The deep ocean, a vast thermal reservoir, absorbs excess heat under greenhouse warming, which ultimately regulates the Earth's surface climate. Even if CO2 emissions are successfully reduced, the stored heat will gradually be released, resulting in a particular pattern of ocean warming. Here, we show that deep ocean warming will lead to El Niño-like ocean warming and resultant increased precipitation in the tropical eastern Pacific with southward shift of the intertropical convergence zone. Consequently, the El Niño-Southern Oscillation shifts eastward, intensifying Eastern Pacific El Niño events. In particular, the deep ocean warming could increase convective extreme El Niño events by 40 to 80% relative to the current climate. Our findings suggest that anthropogenic greenhouse warming will have a prolonged impact on El Niño variability through delayed deep ocean warming, even if CO2 stabilization is achieved.

2.
Mol Pharm ; 21(7): 3330-3342, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38875185

RESUMEN

The aberrant assembly of amyloid-ß (Aß) is implicated in Alzheimer's disease (AD). Recent clinical outcomes of Aß-targeted immunotherapy reinforce the notion that clearing Aß burden is a potential therapeutic approach for AD. Herein, to develop drug candidates for chemically driven clearance of Aß aggregates, we synthesized 51 novel polyfunctionalized furo[2,3-b:4,5-b']dipyridine-chalcone hybrid compounds. After conducting two types of cell-free anti-Aß functional assays, Aß aggregation prevention and Aß aggregate clearance, we selected YIAD-0336, (E)-8-((1H-pyrrol-2-yl)methylene)-10-(4-chlorophenyl)-2,4-dimethyl-7,8-dihydropyrido[3',2':4,5]furo[3,2-b]quinolin-9(6H)-one, for further in vivo investigations. As YIAD-0336 exhibited a low blood-brain barrier penetration profile, it was injected along with aggregated Aß directly into the intracerebroventricular region of ICR mice and ameliorated spatial memory in Y-maze tests. Next, YIAD-0336 was orally administered to 5XFAD transgenic mice with intravenous injections of mannitol, and YIAD-0336 significantly removed Aß plaques from the brains of 5XFAD mice. Collectively, YIAD-0336 dissociated toxic aggregates in the mouse brain and hence alleviated cognitive deterioration. Our findings indicate that chemically driven clearance of Aß aggregates is a promising therapeutic approach for AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ratones , Péptidos beta-Amiloides/metabolismo , Chalcona/química , Chalcona/farmacología , Chalcona/análogos & derivados , Chalconas/química , Chalconas/farmacología , Chalconas/administración & dosificación , Masculino , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Humanos , Memoria/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Piridinas/química , Piridinas/farmacología , Piridinas/administración & dosificación
3.
Heliyon ; 10(6): e27148, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38500982

RESUMEN

Breast cancer (BC) remains a significant global health threat, with triple-negative breast cancer (TNBC) standing out as a particularly aggressive subtype lacking targeted therapies. Addressing this gap, we propose Quiescin Q6 sulfhydryl oxidase 2 (QSOX2) as a potential therapeutic target, a disulfide bond-forming enzyme implicated in cancer progression. Using publicly available datasets, we conducted a comprehensive analysis of QSOX2 expression in BC tumor and non-tumor tissues, assessing its specificity across different molecular subtypes. We further explored correlations between QSOX2 expression and patient outcomes, utilizing datasets like TCGA and METABRIC. In addition, we performed in vitro experiments to evaluate QSOX2 expression in BC cell lines and investigate the effects of QSOX2 knockdown on various TNBC cellular processes, including cell proliferation, apoptosis resistance, migration, and the epithelial-to-mesenchymal transition (EMT). Our results reveal significantly elevated QSOX2 expression in BC tumor tissues, particularly in TNBC, and establish an association between high QSOX2 expression and increased patient mortality, cancer progression, and recurrence across various BC subtypes. Notably, QSOX2 knockdown in TNBC cell lines reduces cell proliferation, enhances apoptosis, and suppresses migration, potentially mediated through its influence on the EMT process. Furthermore, we identify a significant link between QSOX2 and integrin ß1 (ITGB1), suggesting that QSOX2 enhances ITGB1 stability, subsequently exacerbating the malignancy of TNBC. In conclusion, elevated QSOX2 expression emerges as a key factor associated with adverse patient outcomes in BC, particularly in TNBC, contributing to disease progression through various mechanisms, including the modulation of ITGB1 stability. Our findings underscore the potential of targeting QSOX2 as a therapeutic strategy for improving patient prognoses not only in TNBC but also in other BC subtypes.

4.
Int J Biol Sci ; 20(3): 1045-1063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322121

RESUMEN

Homeobox genes and their encoded DNA-binding homeoproteins are master regulators of development. Consequently, these homeotic elements may regulate key steps in cancer pathogenesis. Here, using a combination of in silico analyses of large-scale patient datasets, in vitro RNAi phenotyping, and in vivo validation studies, we investigated the role of HOXB2 in different molecular subtypes of human breast cancer (BC). The gene expression signatures of HOXB2 are different across distinct BC subtypes due to various genetic alterations, but HOXB2 was specifically downregulated in the aggressive triple-negative subtype (TNBC). We found that the reduced expression of HOXB2 was correlated with the metastatic abilities (epithelial-to-mesenchymal transition) of TNBC cells. Further, we revealed that HOXB2 restrained TNBC aggressiveness by ECM organization. HOXB2 bound to the promoter regions of MATN3 and ECM2 and regulated their transcription levels. Forced expression of HOXB2 effectively prevented TNBC progression and metastasis in a mouse xenograft model. Reduction of HOXB2 and the HOXB2/MATN3/ECM2 transcriptional axis correlated with poor survival in patients with various cancers. Further, we found the long non-coding RNA HOXB-AS1 in complex with SMYD3, a lysine methyltransferase, as an epigenetic switch controlling HOXB2 expression. Overall, our results indicate a tumor-suppressive role of HOXB2 by maintaining ECM organization and delineate potential clinical utility of HOXB2 as a marker for TNBC patients.


Asunto(s)
Proteínas de Homeodominio , Factores de Transcripción , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Transición Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes Homeobox , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Neoplasias de la Mama Triple Negativas/metabolismo
5.
Mol Med ; 29(1): 114, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37718409

RESUMEN

BACKGROUND: Sexual dimorphism in placental physiology affects the functionality of placental adaptation during adverse pregnancy. Defects of placental function compromise fetal programming, affecting the offspring's adult life. However, studies focusing on the relationship between sex-specific placental adaptation and consequent fetal maldevelopment under sub-optimal uterus milieu are still elusive. METHODS: Here, we investigated the effects of maternal lipopolysaccharide (LPS) exposure between placental sex. Pregnant ICR mice received intraperitoneal injection of phosphate-buffered saline or 100, 200, and 400 µg/kg LPS on the gestational day (GD) 15.5. To determine whether prenatal maternal LPS exposure resulted in complicated pregnancy outcomes, survival rate of embryos was calculated and the growth of embryos and placentas was examined. To elucidate global transcriptomic changes occurring in the placenta, total RNA-sequencing (RNA-seq) was performed in female and male placentas. RESULTS: LPS administration induced placental inflammation in both sexes at GD 17.5. Prenatal infection resulted in growth retardation in both sexes of embryos, and especially more prevalently in male. Impaired placental development was observed in a sex-specific manner. LPS 400 µg/kg reduced the percentage area of the labyrinth in females and junctional zone in males, respectively. RNA-sequencing revealed widespread sexually dimorphic transcriptional changes in placenta. In particular, representative changes were involved in biological processes such as trophoblast differentiation, nutrient/ion transporter, pregnancy, and immune system. CONCLUSIONS: Our results present the sexually dimorphic responses of placental physiology in intrauterine growth restriction model and provide tentative relationship further to be elucidated between sex-biased placental functional change and long-term effects on the offspring's later life.


Asunto(s)
Retardo del Crecimiento Fetal , Lipopolisacáridos , Femenino , Masculino , Embarazo , Ratones , Animales , Humanos , Ratones Endogámicos ICR , Retardo del Crecimiento Fetal/inducido químicamente , Placenta , ARN
6.
Sci Adv ; 9(25): eadh2412, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37343086

RESUMEN

Convective extreme El Niño (CEE) events, characterized by strong convective events in the eastern Pacific, are known to have a direct link to anomalous climate conditions worldwide, and it has been reported that CEE will occur more frequently under greenhouse warming. Here, using a set of CO2 ramp-up and ramp-down ensemble experiments, we show that frequency and maximum intensity of CEE events increase further in the ramp-down period from the ramp-up period. These changes in CEE are associated with the southward shift of the intertropical convergence zone and intensified nonlinear rainfall response to sea surface temperature change in the ramp-down period. The increasing frequency of CEE has substantial impacts on regional abnormal events and contributed considerably to regional mean climate changes to the CO2 forcings.

7.
Exp Mol Med ; 55(4): 725-734, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37009802

RESUMEN

Comparative oncology is a field of study that has been recently adopted for studying cancer and developing cancer therapies. Companion animals such as dogs can be used to evaluate novel biomarkers or anticancer targets before clinical translation. Thus, the value of canine models is increasing, and numerous studies have been conducted to analyze similarities and differences between many types of spontaneously occurring cancers in canines and humans. A growing number of canine cancer models as well as research-grade reagents for these models are becoming available, leading to substantial growth in comparative oncology research spanning from basic science to clinical trials. In this review, we summarize comparative oncology studies that have been conducted on the molecular landscape of various canine cancers and highlight the importance of the integration of comparative biology into cancer research.


Asunto(s)
Neoplasias , Mascotas , Humanos , Animales , Perros , Modelos Animales de Enfermedad , Neoplasias/genética , Neoplasias/terapia
8.
Nat Immunol ; 24(1): 148-161, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577929

RESUMEN

Regulatory T (Treg) cells have an immunosuppressive function and highly express the immune checkpoint receptor PD-1 in the tumor microenvironment; however, the function of PD-1 in tumor-infiltrating (TI) Treg cells remains controversial. Here, we showed that conditional deletion of PD-1 in Treg cells delayed tumor progression. In Pdcd1fl/flFoxp3eGFP-Cre-ERT2(+/-) mice, in which both PD-1-expressing and PD-1-deficient Treg cells coexisted in the same tissue environment, conditional deletion of PD-1 in Treg cells resulted in impairment of the proliferative and suppressive capacity of TI Treg cells. PD-1 antibody therapy reduced the TI Treg cell numbers, but did not directly restore the cytokine production of TI CD8+ T cells in TC-1 lung cancer. Single-cell analysis indicated that PD-1 signaling promoted lipid metabolism, proliferation and suppressive pathways in TI Treg cells. These results suggest that PD-1 ablation or inhibition can enhance antitumor immunity by weakening Treg cell lineage stability and metabolic fitness in the tumor microenvironment.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Animales , Ratones , Linfocitos T CD8-positivos , Expresión Génica , Linfocitos Infiltrantes de Tumor , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral
9.
Cell J ; 24(1): 51-54, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35182065

RESUMEN

General control non-derepressible 5 (Gcn5) is a member of histone acetyltransferase (HAT) that plays key roles during embryogenesis as well as in the development of various human cancers. Gcn5, an epigenetic regulator of Hoxc11, has been reported to be negatively regulated by Akt1 in the mouse embryonic fibroblasts (MEFs). However, the exact mechanism by which Akt1 regulates Gcn5 is not well understood. Using protein stability chase assay, we observed that Gcn5 is negatively regulated by Akt1 at the post-translational level in MEFs. The stability of Gcn5 protein is determined by the competitive binding with the protein partner that interacts with Gcn5. The interaction of Gcn5 and Cul4a-Ddb1 complex predominates and promotes ubiquitination of Gcn5 in the wild-type MEFs. On the other hand, in the Akt1-null MEFs, the interaction of Gcn5 and And-1 inhibits binding of Gcn5 and Cul4a-Dbd1 E3 ubiquitin ligase complex, thereby increasing the stability of the Gcn5 protein. Taken together, our study indicates that Akt1 negatively controls Gcn5 via the proteasomal degradation pathway, suggesting a potential mechanism that regulates the expression of Hox genes.

10.
J Immunol ; 207(7): 1703-1709, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34544812

RESUMEN

Advances in data collection (high-throughput shotgun metagenomics, transcriptomics, and metabolomics) and analysis (bioinformatics and multiomics) led to the realization that all mammals are metaorganisms, shaped not only by their own genome but also by the genomes of the microbes that colonize them. To date, most studies have focused on the bacterial microbiome, whereas curated databases for viruses, fungi, and protozoa are still evolving. Studies on the interdependency of microbial kingdoms and their combined effects on host physiology are just starting. Although it is clear that past and present exposure to commensals and pathogens profoundly affect human physiology, such exposure is lacking in standard preclinical models such as laboratory mice. Laboratory mouse colonies are repeatedly rederived in germ-free status and subjected to restrictive, pathogen-free housing conditions. This review summarizes efforts to bring the wild microbiome into the laboratory setting to improve preclinical models and their translational research value.


Asunto(s)
Animales de Laboratorio/fisiología , Animales Salvajes/fisiología , Infecciones/inmunología , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Vida Libre de Gérmenes , Interacciones Microbiota-Huesped , Humanos , Metabolómica , Metagenómica , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...