Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1192249, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37485501

RESUMEN

Both crude protein (CP) and probiotics can modulate the gut microbiome of the host, thus conferring beneficial effects. However, the benefits of low CP diet supplemented with multispecies probiotics on gut microbiome and its metabolites have not been investigated in pigs. Thus, we investigated the combinatory effects of low CP diet supplemented with multispecies probiotics on gut microbiome composition, function, and microbial metabolites in growing pigs. In total, 140 6 week-old piglets (Landrace × Yorkshire × Duroc) were used in this study. The pigs were divided into four groups with a 2 × 2 factorial design based on their diets: normal-level protein diet (16% CP; NP), low-level protein diet (14% CP; LP), NP with multispecies probiotics (NP-P), and LP with multispecies probiotics (LP-P). After the feeding trial, the fecal samples of the pigs were analyzed. The fecal scores were improved by the probiotic supplementation, especially in LP-P group. We also observed a probiotic-mediated alteration in the gut microbiome of pigs. In addition, LP-P group showed higher species richness and diversity compared with other groups. The addition of multispecies probiotics in low CP diet also enhanced gut microbiota metabolites production, such as short-chain fatty acids (SCFAs) and polyamines. Correlation analysis revealed that Oscillospiraceae UCG-002, Eubacterium coprostanoligenes, Lachnospiraceae NK4A136 group, and Muribaculaceae were positively associated with SCFAs; and Prevotella, Eubacterium ruminantium, Catenibacterium, Alloprevotella, Prevotellaceae NK3B31 group, Roseburia, Butyrivibrio, and Dialister were positively correlated with polyamines. Supplementation with multispecies probiotics modulated the function of the gut microbiome by upregulating the pathways for protein digestion and utilization, potentially contributing to enriched metabolite production in the gut. The results of this study demonstrate that supplementation with multispecies probiotics may complement the beneficial effects of low CP levels in pig feed. These findings may help formulate sustainable feeding strategies for swine production.

2.
Microb Cell Fact ; 22(1): 96, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161468

RESUMEN

BACKGROUND: The use of probiotic lactic acid bacteria as a mucosal vaccine vector is considered a promising alternative compared to the use of other microorganisms because of its "Generally Regarded as Safe" status, its potential adjuvant properties, and its tolerogenicity to the host. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), is highly transmissible and pathogenic. This study aimed to determine the potential of Lactiplantibacillus plantarum expressing SARS-CoV-2 epitopes as a mucosal vaccine against SARS-CoV-2. RESULTS: In this study, the possible antigenic determinants of the spike (S1-1, S1-2, S1-3, and S1-4), membrane (ME1 and ME2), and envelope (E) proteins of SARS-CoV-2 were predicted, and recombinant L. plantarum strains surface-displaying these epitopes were constructed. Subsequently, the immune responses induced by these recombinant strains were compared in vitro and in vivo. Most surface-displayed epitopes induced pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α and interleukin (IL)-6] and anti-inflammatory cytokines (IL-10) in lipopolysaccharide-induced RAW 264.7, with the highest anti-inflammatory to pro-inflammatory cytokine ratio in the S1-1 and S1-2 groups, followed by that in the S1-3 group. When orally administered of recombinant L. plantarum expressing SARS-CoV-2 epitopes in mice, all epitopes most increased the expression of IL-4, along with induced levels of TNF-α, interferon-gamma, and IL-10, specifically in spike protein groups. Thus, the surface expression of epitopes from the spike S1 protein in L. plantarum showed potential immunoregulatory effects, suggesting its ability to potentially circumvent hyperinflammatory states relevant to monocyte/macrophage cell activation. At 35 days post immunization (dpi), serum IgG levels showed a marked increase in the S1-1, S1-2, and S1-3 groups. Fecal IgA levels increased significantly from 21 dpi in all the antigen groups, but the boosting effect after 35 dpi was explicitly observed in the S1-1, S1-2, and S1-3 groups. Thus, the oral administration of SARS-CoV-2 antigens into mice induced significant humoral and mucosal immune responses. CONCLUSION: This study suggests that L. plantarum is a potential vector that can effectively deliver SARS-CoV-2 epitopes to intestinal mucosal sites and could serve as a novel approach for SARS-CoV-2 mucosal vaccine development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Humanos , Interleucina-10 , Inmunidad Mucosa , Epítopos , Factor de Necrosis Tumoral alfa , Vacunas contra la COVID-19 , COVID-19/prevención & control , Inmunización , Citocinas
3.
J Anim Sci Technol ; 64(4): 671-695, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35969697

RESUMEN

The gastrointestinal tract is a complex ecosystem that contains a large number of microorganisms with different metabolic capacities. Modulation of the gut microbiome can improve the growth and promote health in pigs. Crosstalk between the host, diet, and the gut microbiome can influence the health of the host, potentially through the production of several metabolites with various functions. Short-chain and branched-chain fatty acids, secondary bile acids, polyamines, indoles, and phenolic compounds are metabolites produced by the gut microbiome. The gut microbiome can also produce neurotransmitters (such as γ-aminobutyric acid, catecholamines, and serotonin), their precursors, and vitamins. Several studies in pigs have demonstrated the importance of the gut microbiome and its metabolites in improving growth performance and feed efficiency, alleviating stress, and providing protection from pathogens. The use of probiotics is one of the strategies employed to target the gut microbiome of pigs. Promising results have been published on the use of probiotics in optimizing pig production. This review focuses on the role of gut microbiome-derived metabolites in the performance of pigs and the effects of probiotics on altering the levels of these metabolites.

4.
BioTech (Basel) ; 11(1)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35822811

RESUMEN

Infectious diseases caused by mucosal pathogens significantly increase mortality and morbidity. Thus, the possibility to target these pathogens at their primary entry points can consolidate protective immunity. Regarding SARS-CoV-2 infection, it has been observed that the upper respiratory mucosa is highly affected and that dysregulation of resident microbiota in the gut-lung axis plays a crucial role in determining symptom severity. Thus, understanding the possibility of eliciting various mucosal and adaptive immune responses allows us to effectively design bacterial mucosal vaccine vectors. Such design requires rationally selecting resident bacterial candidates as potential host carriers, evaluating effective carrier proteins for stimulating an immune response, and combining these two to improve antigenic display and immunogenicity. This review investigated mucosal vaccine vectors from 2015 to present, where a few have started to utilize Salmonella and lactic acid bacteria (LAB) to display SARS-CoV-2 Spike S proteins or fragments. Although current literature is still lacking for its studies beyond in vitro or in vivo efficiency, decades of research into these vectors show promising results. Here, we discuss the mucosal immune systems focusing on the gut-lung axis microbiome and offer new insight into the potential use of alpha streptococci in the upper respiratory tract as a vaccine carrier.

5.
J Anim Sci Technol ; 63(5): 1142-1158, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34796353

RESUMEN

Short-chain fatty acids (SCFAs) are metabolic products produced during the microbial fermentation of non-digestible fibers and play an important role in metabolic homeostasis and overall gut health. In this study, we investigated the effects of supplementation with multispecies probiotics (MSPs) containing Bacillus amyloliquefaciens, Limosilactobacillus reuteri, and Levilactobacillus brevis on the gut microbiota, and fecal SCFAs and lactate levels of weaned pigs. A total of 38 pigs weaned at 4 weeks of age were fed either a basal diet or a diet supplemented with MSPs for 6 weeks. MSP administration significantly increased the fecal concentrations of lactate (2.3-fold; p < 0.01), acetate (1.8-fold; p < 0.05), and formate (1.4-fold; p < 0.05). Moreover, MSP supplementation altered the gut microbiota of the pigs by significantly increasing the population of potentially beneficial bacteria such as Olsenella, Catonella, Catenibacterium, Acidaminococcus, and Ruminococcaceae. MSP supplementation also decreased the abundance of pathogenic bacteria such as Escherichia and Chlamydia. The modulation of the gut microbiota was observed to be strongly correlated with the changes in fecal SCFAs and lactate levels. Furthermore, we found changes in the functional pathways present within the gut, which supports our findings that MSP modulates the gut microbiota and SCFAs levels in pigs. The results support the potential use of MSPs to improve the gut health of animals by modulating SCFAs production.

6.
Microorganisms ; 9(9)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34576802

RESUMEN

The aim of the presented study was to investigate the synbiotic effects of L. rhamnosus 4B15 and C. tricuspidata extract administration on the gut microbiota and obesity-associated metabolic parameters in diet-induced obese mice. Thirty-one 6-week-old male C57BL/N6 mice were divided into five diet groups: normal diet (ND, n = 7) group; high-fat diet (HFD, n = 6) group; probiotic (PRO, n = 5) group; prebiotic (PRE, n = 7) group; and synbiotic (SYN, n = 6) group. After 10 weeks, the percent of fat mass, serum triglyceride, and ALT levels were significantly reduced in SYN-fed obese mice, compared with other treatments. SYN treatment also modulated the abundance of Desulfovibrio, Dorea, Adlercreutzia, Allobaculum, Coprococcus, unclassified Clostridiaceae, Lactobacillus, Helicobacter, Flexispira, Odoribacter, Ruminococcus, unclassified Erysipelotrichaceae, and unclassified Desulfovibrionaceae. These taxa showed a strong correlation with obesity-associated indices. Lastly, the SYN-supplemented diet upregulated metabolic pathways known to improve metabolic health. Further investigations are needed to understand the mechanisms driving the synbiotic effect of C. tricuspidata and L. rhamnosus 4B15.

7.
Molecules ; 26(18)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34577166

RESUMEN

Lactobacillus sp. have long been studied for their great potential in probiotic applications. Recently, proteomics analysis has become a useful tool for studies on potential lactobacilli probiotics. Specifically, proteomics has helped determine and describe the physiological changes that lactic acid bacteria undergo in specific conditions, especially in the host gut. In particular, the extracellular proteome, or exoproteome, of lactobacilli contains proteins specific to host- or environment-microbe interactions. Using gel-free, label-free ultra-high performance liquid chromatography tandem mass spectrometry, we explored the exoproteome of the probiotic candidate Lactobacillus mucosae LM1 subjected to bile treatment, to determine the proteins it may use against bile stress in the gut. Bile stress increased the size of the LM1 exoproteome, secreting ribosomal proteins (50S ribosomal protein L27 and L16) and metabolic proteins (lactate dehydrogenase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate dehydrogenases, among others) that might have moonlighting functions in the LM1 bile stress response. Interestingly, membrane-associated proteins (transporters, peptidase, ligase and cell division protein ftsH) were among the key proteins whose secretion were induced by the LM1 bile stress response. These specific proteins from LM1 exoproteome will be useful in observing the proposed bile response mechanisms via in vitro experiments. Our data also reveal the possible beneficial effects of LM1 to the host gut.


Asunto(s)
Proteínas Bacterianas/análisis , Bilis/fisiología , Lactobacillus/metabolismo , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Proteínas Bacterianas/metabolismo , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica/fisiología , Gluconeogénesis/fisiología , Glucólisis/fisiología , Proteómica/métodos , Proteínas Ribosómicas/análisis , Estimulación Química , Espectrometría de Masas en Tándem
8.
Food Sci Anim Resour ; 41(2): 343-352, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33987554

RESUMEN

The objective of this study was to evaluate the effects of Lactobacillus acidophilus ATCC 43121 and L. fermentum MF27 on biochemical indices in the serum, cholesterol metabolism in the liver and mucin expression in the gallbladder in lithogenic diet (LD)-induced C57BL/6J mice to determine the preventive effects of lactobacilli on gallstone formation. By the end of 4 wk of the experimental period, mice fed on a LD with high-fat and high-cholesterol exhibited higher levels of total and low-density lipoprotein cholesterol in the serum compared to mice fed on control diet or LD with L. acidophilus ATCC 43121 (LD+P1; p<0.05). Cholesterol-lowering effects observed in the LD+P1 and LD with L. fermentum MF27 (LD+P2) groups were associated with reduced expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase in the liver compared to the LD group (p<0.05). Furthermore, expression of the gel-forming mucin, including MUC5AB and MUC5B, was suppressed in the LD+P1 and LD+P2 groups compared to the LD group (p<0.05). Therefore, steady intake of both L. acidophilus ATCC 43121 and L. fermentum MF27 may have the ability to prevent the formation of cholesterol gallstones in LD-induced C57BL/6J mice.

9.
Proteomes ; 9(1)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578796

RESUMEN

Probiotics must not only exert a health-promoting effect but also be capable of adapting to the harsh environment of the gastrointestinal (GI) tract. Probiotics in the GI tract must survive the cell wall-disrupting effect of bile acids. We investigated the exoproteome of Lactobacillus johnsonii PF01 and C1-10 under bile stress. A comparative analysis revealed the similarities between the two L. johnsonii exoproteomes, as well as their different responses to bile. The large number of metabolic proteins in L. johnsonii revealed its metabolic adaptation to meet protein synthesis requirements under bile stress. In addition, cell wall modifications occurred in response to bile. Furthermore, some extracellular proteins of L. johnsonii may have moonlighting function in the presence of bile. Enolase, L-lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, 50s ribosomal protein L7/L12, and cellobiose-specific phosphotransferase system (PTS) sugar transporter were significantly upregulated under bile stress, suggesting a leading role in the collective bile stress response of L. johnsonii from its exoproteome perspective.

10.
J Anim Sci Technol ; 62(5): 761-763, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33089240

RESUMEN

Here we report the complete genome sequence of Bacillus amyloliquefaciens ATC6, which produces acidic cellulase, isolated from pig feces. The genome is 4,062,817 bp in length and has a guanine-cytosine (GC) content of 46.27%. Among the predicted 3,913 protein-coding genes, two glucanase genes, which are involved in lichenan and cellulose degradation, were found. This genome analysis helps clarify the mechanism involved in cellulose biodegradation and support its application for efficient use of livestock feeds.

11.
Anim Sci J ; 91(1): e13418, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32648357

RESUMEN

Gastrointestinal microbiota impact host's biological activities, including digestion of indigestible feed components, energy harvest, and immunity. In this study, fecal microbiota of high body weight (HW) and low body weight (LW) growing pigs at 103 days of age were compared. Principal coordinates analysis separated the HW and LW groups into two clusters, indicating their potential differences between microbial community composition. Although the abundances of two major phyla, Firmicutes and Bacteroidetes, did not significantly differ between the HW and LW groups, some genera showed significant differences. Among them, Peptococcus and Eubacterium exhibited strong positive correlations with body weight (BW) and average daily gain (ADG) (Rho > 0.40), whereas Treponema, Desulfovibrio, Parabacteroides, and Ruminococcaceae_unclassified exhibited strong negative correlations with BW and ADG (Rho < -0.40). Based on these results, the structure of intestinal microbiota may affect growth traits in pigs through host-microbe interactions. Further in-depth studies will provide insights into how best to reshape host-microbe interactions in pigs and other animals as well.


Asunto(s)
Peso Corporal , Microbioma Gastrointestinal/fisiología , Porcinos/crecimiento & desarrollo , Porcinos/microbiología , Animales , Eubacterium , Interacciones Microbiota-Huesped , Peptococcus , Aumento de Peso
12.
Appl Microbiol Biotechnol ; 104(14): 6273-6285, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32394142

RESUMEN

High-fat diet (HFD)-induced obesity has been associated with alteration of gut microbiota alongside body weight gain. In this study, the synbiotic effect of Lactobacillus gasseri 505 (LG) and Cudrania tricuspidata (CT) in HFD-induced mice was revealed. After feeding mice with high-fat diet for 10 weeks, combination of LG and CT (LG_CT) exhibited the greatest reduction in the final body weight (11.9%). Moreover, microbial diversity significantly increased, and Principal Coordinate Analysis (PCoA) revealed that the LG_CT group showed closer cluster to NORM. At phylum level, the Firmicutes/Bacteroidetes (F/B) ratio increased in HFD, and the abundance of Bacteroidetes was restored by LG and CT. At genus level, notable changes in Alistipes, Desulfovibrio, Bilophila, and Acetatifactor were observed. Helicobacter elevated to 16.2% in HFD and diminished dramatically to less than 0.01% in LG and/or CT. At species level, L. gasseri increased after the administration of LG (0.54%) and LG_CT (1.14%), suggesting that LG may grow and colonize in the gut and CT can function as a prebiotic. Finally, functional analysis revealed certain metabolic factors correlated with body weight and gut microbiota. This study serves as a potential basis for the application of L. gasseri 505 and C. tricuspidata in the prevention and treatment of diet-induced obesity.Key Points • Combination of L. gasseri (LG) and C. tricuspidata (CT) reduced body weight gain.• Microbial diversity significantly increased in LG_CT treatment.• Abundance of microorganisms involved with leanness increased in LG, CT, and LG_CT.• Body weight is associated with some metabolic functions of gut microbiota.


Asunto(s)
Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillus gasseri/fisiología , Moraceae/química , Obesidad/terapia , Simbióticos/administración & dosificación , Animales , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Obesidad/microbiología
13.
Genomics ; 111(1): 24-33, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29277352

RESUMEN

Lactobacillus mucosae is currently of interest as putative probiotics due to their metabolic capabilities and ability to colonize host mucosal niches. L. mucosae LM1 has been studied in its functions in cell adhesion and pathogen inhibition, etc. It demonstrated unique abilities to use energy from carbohydrate and non-carbohydrate sources. Due to these functions, we report the first complete genome sequence of an L. mucosae strain, L. mucosae LM1. Analysis of the pan-genome in comparison with closely-related Lactobacillus species identified a complete glycogen metabolism pathway, as well as folate biosynthesis, complementing previous proteomic data on the LM1 strain. It also revealed common and unique niche-adaptation genes among the various L. mucosae strains. The aim of this study was to derive genomic information that would reveal the probable mechanisms underlying the probiotic effect of L. mucosae LM1, and provide a better understanding of the nature of L. mucosae sp.


Asunto(s)
Adaptación Fisiológica , Genoma Bacteriano , Lactobacillus/genética , Lactobacillus/metabolismo , Adaptación Fisiológica/genética , Adhesión Bacteriana , Ecosistema , Ácido Fólico/biosíntesis , Islas Genómicas , Genómica , Glucógeno/metabolismo , Glicósido Hidrolasas/metabolismo , Filogenia , Probióticos , Proteómica , Secuenciación Completa del Genoma
14.
Korean J Food Sci Anim Resour ; 38(5): 1008-1018, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30479507

RESUMEN

Although bacteriocins with anti-listerial activity have been isolated from a wide variety of lactic acid bacteria, little is known about those from Leuconostoc lactis, a heterofermentative bacterium that produces diacetyl and exopolysaccharides in dairy foods. In this study, an anti-listerial bacteriocin was isolated from Leuc. lactis SD501 and characterized. It was particularly potent against Listeria monocytogenes and also inhibited Enterococcus faecalis. Anti-listerial activity reached a maximum during the early stationary phase and then decreased gradually. The anti-listerial substance was sensitive to proteinase K and ɑ-chymotrypsin, confirming its proteinaceous nature. Its activity remained stable at pH values ranging from 1 to 10. In addition, it was strongly resistant to high temperatures, retaining its activity even after incubation for 15 min at 121℃. The apparent molecular mass of the partially purified anti-listerial bacteriocin was approximately 7 kDa. The characteristics of the SD501 bacteriocin, including its small molecular size (<10 kDa), strong anti-listerial activity, wide pH stability and good thermostability, indicate its classification as a Class IIa bacteriocin.

15.
Dig Dis Sci ; 63(10): 2754-2764, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29876777

RESUMEN

BACKGROUND/AIMS: The efficacy of probiotics for improving clinical symptoms, altering the fecal microbiota, and regulating serum immune cytokine levels was investigated in patients with irritable bowel syndrome-constipation (IBS-C) or functional constipation (FC). METHODS: A randomized, double-blind, placebo-controlled trial was conducted at Kyung Hee University Hospital between October 2016 and February 2017. Consecutive 18-75-year-old patients with diagnosis of IBS-C or FC (based on Rome IV criteria) consumed probiotics (3.0 × 108 CFU/g Streptococcus thermophilus MG510 and 1.0 × 108 CFU/g Lactobacillus plantarum LRCC5193) or a placebo daily for 4 weeks (weeks 1-4) and were followed up for a 4-week washout period without intervention (weeks 5-8). The primary outcomes of the study were Bristol Stool Form Scale and Complete Spontaneous Bowel Movements (CSBM). Efficacy was assessed by per protocol. RESULTS: Stool consistency measured by the Bristol Stool Form Scale was significantly better in the probiotic group (n = 88) than in the placebo group (n = 83) at 4 and 8 weeks (3.7 ± 1.1 vs. 3.1 ± 1.1 at 8 weeks, P = 0.002). No significant difference was found in CSBM. The quality of life was significantly better in the probiotic group than in the placebo group at 4 weeks (P = 0.044) and 8 weeks (P = 0.049). The relative abundance of L. plantarum among the fecal microbiomes was significantly greater in the probiotic group than in the placebo group at 4 weeks (P = 0.029). However, the levels of other microbiomes and of serum cytokines (IL-10/IL-12 ratio and TNF-α) did not differ significantly between the two groups. CONCLUSIONS: Probiotics significantly ameliorated stool consistency in patients with chronic constipation. In addition, the beneficial effect of L. plantarum on stool consistency remained after the probiotic supplementation was discontinued. The mechanism whereby probiotics benefit patients with chronic constipation should be clarified in further studies.


Asunto(s)
Estreñimiento/terapia , Heces/microbiología , Probióticos/uso terapéutico , Adulto , Estreñimiento/sangre , Estreñimiento/etiología , Citocinas/sangre , Método Doble Ciego , Femenino , Humanos , Síndrome del Colon Irritable/complicaciones , Masculino , Persona de Mediana Edad
16.
FEMS Microbiol Lett ; 364(18)2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28934382

RESUMEN

Research findings on probiotics highlight their importance in repressing harmful bacteria, leading to more extensive research on their potential applications. We analysed the genome of Lactobacillus fermentum SK152, which was isolated from the Korean traditional fermented vegetable dish kimchi, to determine the genetic makeup and genetic factors responsible for the antimicrobial activity of L. fermentum SK152 and performed a comparative genome analysis with other L. fermentum strains. The genome of L. fermentum SK152 was found to comprise a complete circular chromosome of 2092 273 bp, with an estimated GC content of 51.9% and 2184 open reading frames. It consisted of 2038 protein-coding genes and 73 RNA-coding genes. Moreover, a gene encoding a putative endolysin was found. A comparative genome analysis with other L. fermentum strains showed that SK152 is closely related to L. fermentum 3872 and F-6. An evolutionary analysis identified five positively selected genes that encode proteins associated with transport, survival and stress resistance. These positively selected genes may be essential for L. fermentum to colonise and survive in the stringent environment of the human gut and exert its beneficial effects. Our findings highlight the potential benefits of SK152.


Asunto(s)
Antibiosis/genética , Microbiología de Alimentos , Genoma Bacteriano , Limosilactobacillus fermentum/genética , Probióticos , Productos Vegetales/microbiología , Brassica/microbiología , ADN Circular/genética , Endopeptidasas/genética , Fermentación , Limosilactobacillus fermentum/clasificación , Limosilactobacillus fermentum/aislamiento & purificación , Filogenia , Secuenciación Completa del Genoma
17.
Asian-Australas J Anim Sci ; 30(9): 1332-1339, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28423869

RESUMEN

OBJECTIVE: This study investigated the effects of Bacillus subtilis CSL2 (B. subtilis CSL2) administration before Salmonella challenge on the fecal microbiota and microbial functionality of Hy-line Brown (HLB) laying hens. METHODS: Fecal samples were collected from control (CON), Salmonella-infected (SAL) and Salmonella-infected, probiotic-treated (PRO) groups before and after Salmonella challenge for microbiome analysis using 16S rRNA gene pyrosequencing. RESULTS: Infection with Salmonella led to decreased microbial diversity in hen feces; diversity was recovered with Bacillus administration. In addition, Salmonella infection triggered significant alterations in the composition of the fecal microbiota. The abundance of the phylum Firmicutes decreased while that of Proteobacteria, which includes a wide variety of pathogens, increased significantly. Bacillus administration resulted in normal levels of abundance of Firmicutes and Proteobacteria. Analysis of bacterial genera showed that Salmonella challenge decreased the population of Lactobacillus, the most abundant genus, and increased populations of Pseudomonas and Flavobacterium genera by a factor of 3 to 5. On the other hand, Bacillus administration caused the abundance of the Lactobacillus genus to recover to control levels and decreased the population of Pseudomonas significantly. Further analysis of operational taxonomic units revealed a high abundance of genes associated with two-component systems and secretion systems in the SAL group, whereas the PRO group had more genes associated with ribosomes. CONCLUSION: The results of this study indicate that B. subtilis CSL2 administration can modulate the microbiota in HLB laying hens, potentially acting as a probiotic to protect against Salmonella Gallinarum infection.

18.
Artículo en Inglés | MEDLINE | ID: mdl-28070331

RESUMEN

BACKGROUND: The chicken gastrointestinal tract contains a diverse microbiota whose composition and structure play important roles in gut functionality. In this study, microbial shifts resulting from feed supplementation with Bacillus subtilis CSL2 were evaluated in broilers challenged and unchallenged with Salmonella Gallinarum. To analyse bacterial community composition and functionality, 454 GS-FLX pyrosequencing of 16S rRNA gene amplicons was performed. RESULTS: The Quantitative Insights into Microbial Ecology (QIIME) pipeline was used to analyse changes in the faecal microbiota over a 24-h period. A total of 718,204 sequences from broiler chickens were recorded and analysed. At the phylum level, Firmicutes, Bacteroidetes, and Proteobacteria were the predominant bacterial taxa. In Salmonella-infected chickens (SC), Bacteroidetes were more highly abundant compared to control (NC) and Bacillus-treated (BT) chickens. At the genus level, in the NC and BT groups, Lactobacillus was present at high abundance, and the abundance of Turicibacter, unclassified Enterobacteriaceae, and Bacteroides increased in SC broilers. Furthermore, taxon-independent analysis showed that the SC and BT groups were compositionally distinct at the end of the 24-h period. Further analysis of functional properties showed that B. subtilis CSL2 administration increased gut-associated energy supply mechanisms (i.e. carbohydrate transport and metabolism) to maintain a stable microbiota and protect gut integrity. CONCLUSIONS: This study demonstrated that S. Gallinarum infection and B. subtilis CSL2 supplementation in the diet of broiler chickens influenced the diversity, composition, and functional diversity of the faecal microbiota. Moreover, the findings offer significant insights to understand potential mechanisms of Salmonella infection and the mode of action of probiotics in broiler chickens.

19.
Microb Biotechnol ; 9(4): 486-95, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27305897

RESUMEN

Demand for the development of non-antibiotic growth promoters in animal production has increased in recent years. This report compared the faecal microbiota of weaned piglets under the administration of a basal diet (CON) or that containing prebiotic lactulose (LAC), probiotic Enterococcus faecium NCIMB 11181 (PRO) or their synbiotic combination (SYN). At the phylum level, the Firmicutes to Bacteroidetes ratio increased in the treatment groups compared with the CON group, and the lowest proportion of Proteobacteria was observed in the LAC group. At the family level, Enterobacteriaceae decreased in all treatments; more than a 10-fold reduction was observed in the LAC (0.99%) group compared with the CON group. At the genus level, the highest Oscillibacter proportion was detected in PRO, the highest Clostridium in LAC and the highest Lactobacillus in SYN; the abundance of Escherichia was lowest in the LAC group. Clustering in the discriminant analysis of principal components revealed distinct separation of the feeding groups (CON, LAC, PRO and SYN), showing different microbial compositions according to different feed additives or their combination. These results suggest that individual materials and their combination have unique actions and independent mechanisms for changes in the distal gut microbiota.


Asunto(s)
Biota/efectos de los fármacos , Enterococcus faecium/crecimiento & desarrollo , Heces/microbiología , Aditivos Alimentarios/administración & dosificación , Fármacos Gastrointestinales/administración & dosificación , Lactulosa/administración & dosificación , Probióticos/administración & dosificación , Animales , Análisis de Secuencia de ADN , Porcinos
20.
Biomed Res Int ; 2016: 8521476, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27239477

RESUMEN

We isolated a Bacillus strain, RX7, with inhibitory activity against Listeria monocytogenes from soil and identified it as Bacillus amyloliquefaciens based on 16S rRNA gene sequencing. The inhibitory activity was stable over a wide range of pH and was fully retained after 30 min at 80°C, after which it decreased gradually at higher temperatures. The activity was sensitive to the proteolytic action of α-chymotrypsin, proteinase-K, and trypsin, indicating its proteinaceous nature. This bacteriocin was active against a broad spectrum of bacteria and the fungus Candida albicans. Direct detection of antimicrobial activity on a sodium dodecyl sulfate-polyacrylamide gel suggested an apparent molecular mass of approximately 5 kDa. Ammonium sulfate precipitation and anion-exchange and gel permeation chromatography integrated with reverse phase-high-performance liquid chromatography were used for bacteriocin purification. Automated N-terminal Edman degradation of the purified RX7 bacteriocin recognized the first 15 amino acids as NH2-X-Ala-Trp-Tyr-Asp-Ile-Arg-Lys-Leu-Gly-Asn-Lys-Gly-Ala, where the letter X in the sequence indicates an unknown or nonstandard amino acid. Based on BLAST similarity search and multiple alignment analysis, the obtained partial sequence showed high homology with the two-peptide lantibiotic haloduracin (HalA1) from Bacillus halodurans, although at least two amino acids differed between the sequences. A time-kill study demonstrated a bactericidal mode of action of RX7 bacteriocin.


Asunto(s)
Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Bacillus amyloliquefaciens/química , Bacteriocinas/aislamiento & purificación , Bacteriocinas/farmacología , Bacillus amyloliquefaciens/genética , Candida albicans/efectos de los fármacos , Concentración de Iones de Hidrógeno , Listeria monocytogenes/efectos de los fármacos , Peso Molecular , Proteolisis/efectos de los fármacos , ARN Ribosómico 16S/genética , Microbiología del Suelo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...