Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39203053

RESUMEN

Ganoderma lucidum, a member of the Basidiomycetes family, is attracting attention for its medicinal potential due to its biological activity and the presence of numerous bioactive compounds. Although it is known that extracts of this mushroom inhibit melanin production, there are few reports on a single substance associated with this effect. In this study, we identified ganodermanontriol (GT), a novel compound from G. lucidum, that effectively inhibited melanin biosynthesis in B16F10 cells. GT inhibits melanin production by suppressing the expression of cellular tyrosinase proteins and microphthalmia-related transcription factor (MITF). Furthermore, GT affects the phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) and mitogen-activated protein kinase (MAPK) signaling molecules, which are involved in melanogenesis in B16F10 cells. Finally, the biosynthesis of GT and other substances by G. lucidum was evaluated using HPLC analysis. Thus, this study revealed the mechanism by which GT in G. lucidum inhibits melanin production in B16F10 cells, and these findings will contribute to promoting the potential use of this mushroom in the future.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Melaninas , Reishi , Melaninas/biosíntesis , Melaninas/metabolismo , Animales , Ratones , Reishi/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Línea Celular Tumoral , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Fosforilación/efectos de los fármacos , Factor de Transcripción Asociado a Microftalmía/metabolismo , Transducción de Señal/efectos de los fármacos
2.
J Fungi (Basel) ; 10(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38921359

RESUMEN

Light plays vital roles in fungal growth, development, reproduction, and pigmentation. In Flammulina velutipes, the color of the fruiting body exhibits distinct changes in response to light; however, the underlying molecular mechanisms remain unknown. Therefore, in this study, we aimed to analyze the F. velutipes transcriptome under red, green, and blue light-emitting diode (LED) lights to identify the key genes affecting the light response and fruiting body color in this fungus. Additionally, we conducted protein-protein interaction (PPI) network analysis of the previously reported fruiting body color-related gene, Fvpal1, to identify the hub genes. Phenotypic analysis revealed that fruiting bodies exposed to green and blue lights were darker than those untreated or exposed to red light, with the color intensifying more after 48 h of exposure to blue light compared to that after 24 h of exposure. Differentially expressed gene (DEG) analyses of all light treatments for 24 h revealed that the numbers of DEGs were 17, 74, and 257 under red, green, and blue lights, respectively. Subsequently, functional enrichment analysis was conducted of the DEGs identified under green and blue lights, which influenced the color of F. velutipes. In total, 103 of 168 downregulated DEGs under blue and green lights were included in the enrichment analysis. Among the DEGs enriched under both green and blue light treatments, four genes were related to monooxygenases, with three genes annotated as cytochrome P450s that are crucial for various metabolic processes in fungi. PPI network analysis of Fvpal1 revealed associations with 11 genes, among which the expression of one gene, pyridoxal-dependent decarboxylase, was upregulated in F. velutipes exposed to blue light. These findings contribute to our understanding of the molecular mechanisms involved in the fruiting body color changes in response to light and offer potential molecular markers for further exploration of light-mediated regulatory pathways.

3.
Sci Rep ; 13(1): 11133, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429890

RESUMEN

Gene editing is a promising alternative to traditional breeding for the generation of new mushroom strains. However, the current approach frequently uses Cas9-plasmid DNA to facilitate mushroom gene editing, which can leave residual foreign DNA in the chromosomal DNA raising concerns regarding genetically modified organisms. In this study, we successfully edited pyrG of Ganoderma lucidum using a preassembled Cas9-gRNA ribonucleoprotein complex, which primarily induced a double-strand break (DSB) at the fourth position prior to the protospacer adjacent motif. Of the 66 edited transformants, 42 had deletions ranging from a single base to large deletions of up to 796 bp, with 30 being a single base deletion. Interestingly, the remaining 24 contained inserted sequences with variable sizes at the DSB site that originated from the fragmented host mitochondrial DNA, E. coli chromosomal DNA, and the Cas9 expression vector DNA. The latter two were thought to be contaminated DNAs that were not removed during the purification process of the Cas9 protein. Despite this unexpected finding, the study demonstrated that editing G. lucidum genes using the Cas9-gRNA complex is achievable with comparable efficiency to the plasmid-mediated editing system.


Asunto(s)
Agaricales , Reishi , Reishi/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Fitomejoramiento , ADN Mitocondrial , Ribonucleoproteínas/genética
4.
Mycobiology ; 50(5): 374-381, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36404899

RESUMEN

In the mating of filamentous basidiomycetes, dikaryotic mycelia are generated through the reciprocal movement of nuclei to a monokaryotic cytoplasm where a nucleus of compatible mating type resides, resulting in the establishment of two different dikaryotic strains having the same nuclei but different mitochondria. To better understand the role of mitochondria in mushrooms, we created four sets of dikaryotic strains of Lentinula edodes, including B2 × E13 (B2 side) and B2 × E13 (E13 side), B5 × E13 (B5 side) and B5 × E13 (E13 side), E8 × H3 (E8 side) and E8 × H3 (H3 side), and K3 × H3 (K3 side) and K3 × H3 (H3 side). The karyotypes and mitochondrial types of the dikaryotic strains were successfully identified by the A mating type markers and the mitochondrial variable length tandem repeat markers, respectively. Comparative analyses of the dikaryotic strains on the mycelial growth, substrate browning, fruiting characteristics, and mitochondrial gene expression revealed that certain mitochondria are more effective in the mycelial growth and the production of fruiting body, possibly through the activated energy metabolism. Our findings indicate that mitochondria affect the physiology of dikaryotic strains having the same nuclear information and therefore a selection strategy aimed at mitochondrial function is needed in the development of new mushroom strain.

5.
Mycobiology ; 49(4): 376-384, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512081

RESUMEN

Agaricus bisporus is a popular edible mushroom that is cultivated worldwide. Due to its secondary homothallic nature, cultivated A. bisporus strains have low genetic diversity, and breeding novel strains is challenging. The aim of this study was to investigate the genetic diversity and population structure of globally collected A. bisporus strains using simple sequence repeat (SSR) markers. Agaricus bisporus strains were divided based on genetic distance-based groups and model-based subpopulations. The major allele frequency (MAF), number of genotypes (NG), number of alleles (NA), observed heterozygosity (HO), expected heterozygosity (HE), and polymorphic information content (PIC) were calculated, and genetic distance, population structure, genetic differentiation, and Hardy-Weinberg equilibrium (HWE) were assessed. Strains were divided into two groups by distance-based analysis and into three subpopulations by model-based analysis. Strains in subpopulations POP A and POP B were included in Group I, and strains in subpopulation POP C were included in Group II. Genetic differentiation between strains was 99%. Marker AB-gSSR-1057 in Group II and subpopulation POP C was confirmed to be in HWE. These results will enhance A. bisporus breeding programs and support the protection of genetic resources.

6.
World J Microbiol Biotechnol ; 37(7): 114, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34115218

RESUMEN

Interspecific hybridization between Ganoderma lingzhi and G. applanatum was attempted through polyethylene glycol (PEG) induced fusion technique. The protoplast isolation procedure was simplified, and we obtained a significant number of protoplasts from both Ganoderma species. The number of protoplasts obtained was 5.27 ± 0.31 × 107/mL in G. lingzhi and 5.57 ± 0.49 × 106/mL in G. applanatum. Osmotic stabilizer NaCl (0.4 M) at pH 5.8 and enzymolysis time 3.5 h have supported high frequency of protoplast regeneration. G. lingzhi and G. applanatum regeneration frequency was 1.73 ± 0.04% and 0.23 ± 0.02%, respectively. 40% of PEG induced high number of protoplast fusion the regeneration frequency was 0.09% on a minimal medium. Two hundred fifty-two fusant colonies were isolated from the following four individual experiments. Among them, ten fusants showed the mycelial morphological difference compared to their parents and other fusant isolates. The fruiting body could be generated on oak sawdust and wheat bran substrate, and a few of them showed recombined morphology of the parental strains. The highest yield and biological efficacy (BE) were recorded in GF248, while least in GF244. The hybridity of the fusant was established based on mycelia, fruiting morphology, and PCR fingerprinting. ISSR and RAPD profile analysis of ten fusants and parents depicted that fusants contained polymorphic bands, which specified the rearrangement and deletion of DNA in the fusants. A Dendrogram was constructed based on the RAPD profile, and the clustering data exhibited two major clusters: cluster I included the G. lingzhi and Cluster II, including the G. applanatum and fusant lines. Total polysaccharide (α, ß and total glucan) content was compared with fusants and parental strains. The present study highlighted the efficient methods for protoplast isolation from Ganoderma species. PEG-induced fusants showed high polymorphic frequency index, while the phenotypic characters showed high similarity to G. applanatum. A significant difference was observed in the mushroom yield and its total polysaccharide between the fusants and parental strains.


Asunto(s)
Ganoderma/fisiología , Glucanos/análisis , Protoplastos/fisiología , Medios de Cultivo/química , Dermatoglifia del ADN , Fibras de la Dieta/microbiología , Ganoderma/química , Hibridación Genética , Polietilenglicoles/química , Protoplastos/química , Quercus/microbiología , Técnica del ADN Polimorfo Amplificado Aleatorio
7.
Mycobiology ; 49(6): 589-598, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35035250

RESUMEN

White strains of Hypsizygus marmoreus are more difficult to cultivate than are brown strains; therefore, new white strain breeding strategies are required. Accordingly, we constructed the genetic map of H. marmoreus with 1996 SNP markers on 11 linkage groups (LGs) spanning 1380.49 cM. Prior to analysis, 82 backcrossed strains (HM8 lines) were generated by mating between KMCC03106-31 and the progenies of the F1 hybrid (Hami-18 × KMCC03106-93). Using HM8, the first 23 quantitative trait loci (QTLs) of yield-related traits were detected with high limit of detection (LOD) scores (1.98-9.86). The length, thickness, and hardness of the stipe were colocated on LG 1. Especially, length of stipe and thickness of stipe were highly correlated given that the correlation coefficients were negative (-0.39, p value ≤ .01). And a typical biomodal distribution was observed for lightness of the pileus and the lightness of the pileus trait belonged to the LG 8, as did traits of earliness and mycelial growth in potato dextrose agar (PDA) medium. Therefore, results for color traits can be suggested that color is controlled by a multi-gene of one locus. The yield trait was highly negatively correlated with the traits for thickness of the stipe (-0.45, p value ≤ .01). Based on additive effects, the white strain was confirmed as recessive; however, traits of mycelial growth, lightness, and quality were inherited by backcrossed HM8 lines. This new genetic map, finely mapped QTLs, and the strong selection markers could be used in molecular breeding of H. marmoreus.

8.
Mycobiology ; 49(6): 599-603, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35035251

RESUMEN

CRISPR/Cas9 genome editing systems have been established in a broad range of eukaryotic species. Herein, we report the first method for genetic engineering in pyogo (shiitake) mushrooms (Lentinula edodes) using CRISPR/Cas9. For in vivo expression of guide RNAs (gRNAs) targeting the mating-type gene HD1 (LeA1), we identified an endogenous LeU6 promoter in the L. edodes genome. We constructed a plasmid containing the LeU6 and glyceraldehyde-3-phosphate dehydrogenase (LeGPD) promoters to express the Cas9 protein. Among the eight gRNAs we tested, three successfully disrupted the LeA1 locus. Although the CRISPR-Cas9-induced alleles did not affect mating with compatible monokaryotic strains, disruption of the transcription levels of the downstream genes of LeHD1 and LeHD2 was detected. Based on this result, we present the first report of a simple and powerful genetic manipulation tool using the CRISPR/Cas9 toolbox for the scientifically and industrially important edible mushroom, L. edodes.

9.
PLoS One ; 15(1): e0227923, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31978083

RESUMEN

Genome sequencing of Tricholoma matsutake revealed its unusually large size as 189.0 Mbp, which is a consequence of extraordinarily high transposable element (TE) content. We identified that 702 genes were surrounded by TEs, and 83.2% of these genes were not transcribed at any developmental stage. This observation indicated that the insertion of TEs alters the transcription of the genes neighboring these TEs. Repeat-induced point mutation, such as C to T hypermutation with a bias over "CpG" dinucleotides, was also recognized in this genome, representing a typical defense mechanism against TEs during evolution. Many transcription factor genes were activated in both the primordia and fruiting body stages, which indicates that many regulatory processes are shared during the developmental stages. Small secreted protein genes (<300 aa) were dominantly transcribed in the hyphae, where symbiotic interactions occur with the hosts. Comparative analysis with 37 Agaricomycetes genomes revealed that IstB-like domains (PF01695) were conserved across taxonomically diverse mycorrhizal genomes, where the T. matsutake genome contained four copies of this domain. Three of the IstB-like genes were overexpressed in the hyphae. Similar to other ectomycorrhizal genomes, the CAZyme gene set was reduced in T. matsutake, including losses in the glycoside hydrolase genes. The T. matsutake genome sequence provides insight into the causes and consequences of genome size inflation.


Asunto(s)
Elementos Transponibles de ADN/genética , Genoma Fúngico/genética , Transcripción Genética , Tricholoma/genética , Ascomicetos/genética , Basidiomycota/genética , Regulación Fúngica de la Expresión Génica/genética , Anotación de Secuencia Molecular , Micorrizas/genética , Simbiosis/genética , Secuenciación Completa del Genoma
10.
Mycobiology ; 49(1): 1-14, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536808

RESUMEN

Pleurotus species are commercially essential mushrooms and widely cultivated throughout the world. The production of Pleurotus mushrooms alone accounts for around 25% of that total cultivated mushrooms globally. In America and Europe, Pleurotus species are considered specialty mushrooms, whereas, in Korea, their cultivation is economically profitable, and it is one of the highly consumed species. Pleurotus species are predominantly found in tropical forests and often grow on fallen branches, dead and decaying tree stumps, and wet logs. Biographical studies have shown that the Pleurotus genus is among the more conspicuous fungi that induce wood decay in terrestrial ecosystems worldwide due to its formidable lignin-modifying enzymes, including laccase and versatile peroxidases. Pleurotus species can be grown easily due to their fast colonization nature on diversified agro-substrates and their biological efficiency 100%. Pleurotus mushrooms are rich in proteins, dietary fiber, essential amino acids, carbohydrates, water-soluble vitamins, and minerals. These mushrooms are abundant in functional bioactive molecules, though to influence health. Pleurotus mushrooms are finding unique applications as flavoring, aroma, and excellent preservation quality. Apart from its unique applications, Pleurotus mushrooms have a unique status delicacy with high nutritional and medicinal values. The present review provides an insight into the cultivation of Pleurotus spp. using different agro-waste as growth substances paying attention to their effects on the growth and chemical composition.

11.
Mycobiology ; 49(1): 61-68, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33536813

RESUMEN

Agaricus bisporus, commonly known as the button mushroom, is widely cultivated throughout the world. To breed new strains with more desirable traits and improved adaptability, diverse germplasm, including wild accessions, is a valuable genetic resource. To better understand the genetic diversity available in A. bisporus and identify previously unknown diversity within accessions, a phylogenetic analysis of 360 Agaricus spp. accessions using single-nucleotide polymorphism genotyping was performed. Genetic relationships were compared using principal coordinate analysis (PCoA) among accessions with known origins and accessions with limited collection data. The accessions clustered into four groups based on the PCoA with regard to genetic relationships. A subset of 67 strains, which comprised a core collection where repetitive and uninformative accessions were not included, clustered into 7 groups following analysis. Two of the 170 accessions with limited collection data were identified as wild germplasm. The core collection allowed for the accurate analysis of A. bisporus genetic relationships, and accessions with an unknown pedigree were effectively grouped, allowing for origin identification, by PCoA analysis in this study.

12.
Mycobiology ; 47(4): 527-532, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010475

RESUMEN

We designed 170 new simple sequence repeat (SSR) markers based on the whole-genome sequence data of button mushroom (Agaricus bisporus), and selected 121 polymorphic markers. A total of 121 polymorphic markers, the average major allele frequency (MAF) and the average number of alleles (NA) were 0.50 and 5.47, respectively. The average number of genotypes (NG), observed heterozygosity (HO), expected heterozygosity (HE), and polymorphic information content (PIC) were 6.177, 0.227, 0.619, and 0.569, respectively. Pearson's correlation coefficient showed that MAF was negatively correlated with NG (-0.683), NA (-0.600), HO (-0.584), and PIC (-0.941). NG, NA, HO, and PIC were positively correlated with other polymorphic parameters except for MAF. UPGMA clustering showed that 26 A. bisporus accessions were classified into 3 groups, and each accession was differentiated. The 121 SSR markers should facilitate the use of molecular markers in button mushroom breeding and genetic studies.

13.
BMC Genomics ; 19(1): 789, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382831

RESUMEN

BACKGROUND: Hypsizygus marmoreus (Beech mushroom) is a popular ingredient in Asian cuisine. The medicinal effects of its bioactive compounds such as hypsin and hypsiziprenol have been reported, but the genetic basis or biosynthesis of these components is unknown. RESULTS: In this study, we sequenced a reference strain of H. marmoreus (Haemi 51,987-8). We evaluated various assembly strategies, and as a result the Allpaths and PBJelly produced the best assembly. The resulting genome was 42.7 Mbp in length and annotated with 16,627 gene models. A putative gene (Hypma_04324) encoding the antifungal and antiproliferative hypsin protein with 75% sequence identity with the previously known N-terminal sequence was identified. Carbohydrate active enzyme analysis displayed the typical feature of white-rot fungi where auxiliary activity and carbohydrate-binding modules were enriched. The genome annotation revealed four terpene synthase genes responsible for terpenoid biosynthesis. From the gene tree analysis, we identified that terpene synthase genes can be classified into six clades. Four terpene synthase genes of H. marmoreus belonged to four different groups that implies they may be involved in the synthesis of different structures of terpenes. A terpene synthase gene cluster was well-conserved in Agaricomycetes genomes, which contained known biosynthesis and regulatory genes. CONCLUSIONS: Genome sequence analysis of this mushroom led to the discovery of the hypsin gene. Comparative genome analysis revealed the conserved gene cluster for terpenoid biosynthesis in the genome. These discoveries will further our understanding of the biosynthesis of medicinal bioactive molecules in this edible mushroom.


Asunto(s)
Agaricales/genética , Agaricales/metabolismo , Vías Biosintéticas , Proteínas Fúngicas/genética , Genoma Fúngico , Genómica , Terpenos/metabolismo , Secuencia de Aminoácidos , Metabolismo de los Hidratos de Carbono/genética , Evolución Molecular , Genómica/métodos , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos , Metabolismo Secundario , Análisis de Secuencia de ADN
14.
Mycobiology ; 46(4): 421-428, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30637151

RESUMEN

The white button mushroom (Agaricus bisporus) is one of the most widely cultivated species of edible mushroom. Despite its economic importance, relatively little is known about the genetic diversity of this species. Illumina paired-end sequencing produced 43,871,558 clean reads and 69,174 contigs were generated from five offspring. These contigs were subsequently assembled into 57,594 unigenes. The unigenes were annotated with reference genome in which 6,559 unigenes were associated with clusters, indicating orthologous genes. Gene ontology classification assigned many unigenes. Based on genome data of the five offspring, 44 polymorphic simple sequence repeat (SSR) markers were developed. The major allele frequency ranged from 0.42 to 0.92. The number of genotypes and the number of alleles ranged from 1 to 4, and from 2 to 4, respectively. The observed heterozygosity and the expected heterozygosity ranged from 0.00 to 1.00, and from 0.15 to 0.64, respectively. The polymorphic information content value ranged from 0.14 to 0.57. The genetic distances and UPGMA clustering discriminated offspring strains. The SSR markers developed in this study can be applied in polymorphism analyses of button mushroom and for cultivar discrimination.

15.
Mycobiology ; 44(4): 314-318, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28154490

RESUMEN

Breeding the button mushroom requires genetic information about its strains. This study was undertaken to genetically characterize four domestically bred button mushroom strains (Saea, Saejung, Saedo, Saeyeon cultivars) and to assess the possibility of using the intergenic spacer 1 (IGS1) region of rDNA as a genetically variable region in the genetic characterization. For the experiment, 34 strains of Agaricus bisporus, two strains of A. bitorquis, and one strain of A. silvaticus, from 17 countries were used. Nucleotide sequence analysis of IGS1 rDNA in these 37 Agaricus strains confirmed that genetic variations exist, not only among the four domestic strains, but also between the four domestic strains and foreign strains. Crossing two different haploid strains of A. bisporus seems to generate genetic variation in the IGS1 region in their off-spring haploid strains. Phylogenetic analysis based on the IGS1 sequence revealed all A. bisporus strains could be differentiated from A. silvaticus and A. bitorquis strains. Five genetic groups were resolved among A. bisporus strains. Saejung and Saeyeon cultivars formed a separate genetic group. Our results suggest that IGS1 could be complementarily applied in the polymorphism analysis of button mushroom.

16.
Mycobiology ; 43(1): 81-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25892920

RESUMEN

To promote the selection of promising monokaryotic strains of button mushroom (Agaricus bisporus) during breeding, 61 progeny strains derived from basidiospores of two different lines of dikaryotic parental strains, ASI1038 and ASI1346, were analyzed by nucleotide sequencing of the intergenic spacer I (IGS I) region in their rDNA and by extracellular enzyme assays. Nineteen different sizes of IGS I, which ranged from 1,301 to 1,348 bp, were present among twenty ASI1346-derived progeny strains, while 15 different sizes of IGS I, which ranged from 700 to 1,347 bp, were present among twenty ASI1038-derived progeny strains. Phylogenetic analysis of the IGS sequences revealed that different clades were present in both the ASI10388- and ASI1346-derived progeny strains. Plating assays of seven kinds of extracellular enzymes (ß-glucosidase, avicelase, CM-cellulase, amylase, pectinase, xylanase, and protease) also revealed apparent variation in the ability to produce extracellular enzymes among the 40 tested progeny strains from both parental A. bisporus strains. Overall, this study demonstrates that characterization of IGS I regions and extracellular enzymes is useful for the assessment of the substrate-degrading ability and heterogenicity of A. bisporus monokaryotic strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...