RESUMEN
CPI-17 regulates the myosin phosphatase and mediates the agonist-induced contraction of smooth muscle. PKC and ROCK phosphorylate CPI-17 at Thr38 leading to a conformational change of the central inhibitory domain (PHIN domain). The N- and C-terminal tails of CPI-17 are predicted as unstructured loops and their sequences are conserved among mammals. Here we characterized CPI-17 N- and C-terminal unstructured tails using recombinant proteins that lack the potions. Recombinant CPI-17 proteins at a physiologic level (10 µM) were doped into beta-escin-permeabilized smooth muscle strips for Ca2+ sensitization force measurement. The ectopic full-length CPI-17 augmented the PDBu-induced Ca2+ sensitization force at pCa6.3, indicating myosin phosphatase inhibition. Deletion of N- and C-terminal tails of CPI-17 attenuated the extent of PDBu-induced Ca2+-sensitization force. The N-terminal deletion dampened phosphorylation at Thr38 by protein kinase C (PKC), and the C-terminal truncation lowered the affinity to the myosin phosphatase. Under the physiologic conditions, PKC and myosin phosphatase may recognize CPI-17 N-/C-terminal unstructured tails inducing Ca2+ sensitization force in smooth muscle cells.