Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 3978, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850691

RESUMEN

Animals that communicate using sound are found throughout the animal kingdom. Interestingly, in contrast to human vocal learning, most animals can produce species-specific patterns of vocalization without learning them from their parents. This phenomenon is called innate vocalization. The underlying molecular basis of both vocal learning in humans and innate vocalization in animals remains unknown. The crowing of a rooster is also innately controlled, and the upstream center is thought to be localized in the nucleus intercollicularis (ICo) of the midbrain. Here, we show that the cholecystokinin B receptor (CCKBR) is a regulatory gene involved in inducing crowing in roosters. Crowing is known to be a testosterone (T)-dependent behavior, and it follows that roosters crow but not hens. Similarly, T-administration induces chicks to crow. By using RNA-sequencing to compare gene expression in the ICo between the two comparison groups that either crow or do not crow, we found that CCKBR expression was upregulated in T-containing groups. The expression of CCKBR and its ligand, cholecystokinin (CCK), a neurotransmitter, was observed in the ICo. We also showed that crowing was induced by intracerebroventricular administration of an agonist specific for CCKBR. Our findings therefore suggest that the CCK system induces innate vocalization in roosters.


Asunto(s)
Pollos/metabolismo , Pollos/fisiología , Colecistoquinina/metabolismo , Cuervos/metabolismo , Cuervos/fisiología , Animales , Conducta Animal/fisiología , Expresión Génica/fisiología , Masculino , Neurotransmisores/metabolismo , Receptor de Colecistoquinina B/metabolismo , Sonido , Testosterona/metabolismo , Regulación hacia Arriba/fisiología , Vocalización Animal/fisiología
2.
Sci Rep ; 5: 11683, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26203594

RESUMEN

The "cock-a-doodle-doo" crowing of roosters, which symbolizes the break of dawn in many cultures, is controlled by the circadian clock. When one rooster announces the break of dawn, others in the vicinity immediately follow. Chickens are highly social animals, and they develop a linear and fixed hierarchy in small groups. We found that when chickens were housed in small groups, the top-ranking rooster determined the timing of predawn crowing. Specifically, the top-ranking rooster always started to crow first, followed by its subordinates, in descending order of social rank. When the top-ranking rooster was physically removed from a group, the second-ranking rooster initiated crowing. The presence of a dominant rooster significantly reduced the number of predawn crows in subordinates. However, the number of crows induced by external stimuli was independent of social rank, confirming that subordinates have the ability to crow. Although the timing of subordinates' predawn crowing was strongly dependent on that of the top-ranking rooster, free-running periods of body temperature rhythms differed among individuals, and crowing rhythm did not entrain to a crowing sound stimulus. These results indicate that in a group situation, the top-ranking rooster has priority to announce the break of dawn, and that subordinate roosters are patient enough to wait for the top-ranking rooster's first crow every morning and thus compromise their circadian clock for social reasons.


Asunto(s)
Conducta Animal/fisiología , Pollos/fisiología , Predominio Social , Vocalización Animal/fisiología , Animales , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...