Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(17): 6349-6362, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38699251

RESUMEN

Careful control of electronic properties, structural order, and solubility of π-conjugated polymers is central to the improvement of organic photovoltaic (OPV) performance. In this work, we designed and synthesized a series of naphthobisthiadiazole-quaterthiophene copolymers by systematically replacing the alkyl groups with ester groups and changing the position of the fluorine groups in the quaterthiophene moiety. These alterations lowered the HOMO and LUMO energy levels and systematically varied the combination of intramolecular noncovalent interactions such as O⋯S and F⋯S interactions in the backbone. More importantly, although the introduction of such noncovalent interactions often lowers the solubility owing to the interlocking of backbone linkages, we found that careful design of the noncovalent interactions afforded polymers with relatively high solubility and high crystallinity at the same time. As a result, the power conversion efficiency of OPV cells that used fullerene (PC61BM) and nonfullerene (Y12) as the acceptor was improved. Our work offers important information for the development of high-performance π-conjugated polymers for OPVs.

2.
ACS Appl Mater Interfaces ; 16(3): 3735-3743, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38192099

RESUMEN

Thiazole, as a family of five-membered heteroaromatic rings, is an interesting building unit that can play a role in coplanarizing the backbone as well as deepening the HOMO energy level, which is beneficial for the design of π-conjugated polymers for the photoactive materials in organic photovoltaics (OPVs). Here, we designed and synthesized π-conjugated polymers with simple chemical structures, which consist of 2,2'-bithiazole or 5,5'-bithiazole and alkylthiophenes as the polymer backbone. In fact, the polymers can be easily synthesized in much fewer steps compared to the typical high-performance polymers based on fused heteroaromatic rings. Interestingly, PTN5 exhibited a markedly higher ordered structure than PTN2. This was likely ascribed to the more coplanar and rigid backbone of PTN5 than that of PTN2 originating in the effectively arranged S···N interaction. As a result, the nonfullerene photovoltaic cell based on PTN5 showed a PCE of 12.2%, which was much higher than the cell based on PTN2 (4.3%) and was high for the polymers consisting of only nonfused rings. These results demonstrate that thiazole-based polymers are promising photoactive materials for OPVs and emphasize the importance of careful molecular design utilizing noncovalent interactions.

3.
J Phys Chem Lett ; 14(43): 9706-9712, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37877625

RESUMEN

The driving force of charge separation in the initial photovoltaic conversion process is theoretically investigated using ITIC, a nonfullerene acceptor material for organic photovoltaic devices. The density functional theory calculations show that the pseudo-Jahn-Teller (PJT) distortion of the S1 excimer state induces spontaneous symmetry-breaking charge separation between the identical ITIC molecules even without the asymmetry of the surrounding environment. The strong PJT effect arises from the vibronic coupling between the pseudodegenerate S1 and S2 excited states with different irreducible representations (irreps), i.e., Au for S1 and Ag for S2, via the asymmetric vibrational mode with the Au irrep. The vibrational mode responsible for the spontaneous polarization, which is opposite in one ITIC monomer and the other, is the intramolecular C-C stretching vibration between the core IT and terminal IC units. These results suggest that controlling the PJT effect can improve the charge separation efficiency of the initial photovoltaic conversion process.

4.
Adv Sci (Weinh) ; 10(5): e2205682, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36529702

RESUMEN

In π $\upi$ -conjugated polymers, a highly ordered backbone structure and solubility are always in a trade-off relationship that must be overcome to realize highly efficient and solution-processable organic photovoltaics (OPVs). Here, it is shown that a π $\upi$ -conjugated polymer based on a novel thiazole-fused ring, thieno[2',3':5,6]benzo[1,2-d:4,3-d']bisthiazole (TBTz) achieves both high backbone order and high solubility due to the structural feature of TBTz such as the noncovalent interlocking of the thiazole moiety, the rigid and bent-shaped structure, and the fused alkylthiophene ring. Furthermore, based on the electron-deficient nature of these thiazole-fused rings, the polymer exhibits deep HOMO energy levels, which lead to high open-circuit voltages (VOC s) in OPV cells, even without halogen substituents that are commonly introduced into high-performance polymers. As a result, when the polymer is combined with a typical nonfullerene acceptor Y6, power conversion efficiencies of reaching 16% and VOC s of more than 0.84 V are observed, both of which are among the top values reported so far for "halogen-free" polymers. This study will serve as an important reference for designing π $\upi$ -conjugated polymers to achieve highly efficient and solution-processable OPVs.

5.
Dalton Trans ; 51(1): 74-84, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34881749

RESUMEN

Development of novel near-infrared (NIR) emitters is essential for satisfying the growing demands of advancing optical telecommunication and medical technology. We synthesized elemental skeletons composed of robust π-conjugated systems including two boron-fused azo groups, which showed an intense emission in the red or near-infrared (NIR) region both in solution and solid states. Two types of bisboron complexes with different aromatic linkers showed emission properties with larger bathochromic shifts and emission efficiencies in solution than the corresponding monoboron complex. Transient absorption spectroscopy disclosed that the inferior optical properties of the monoboron complex can be attributed to fast nonradiative deactivation accompanied by a large structural relaxation after photoexcitation. The expanded π-conjugated system through multiple boron-fused azo groups can contribute to rigid molecular skeletons followed by improved emission properties. Moreover, the anti-form of the bisboron complex with fluorine groups in the opposite directions to the π-plane exhibited crystallization-induced emission enhancement in the NIR region. The molecular design by using multiple boron-fused azo groups is expected to be a critical strategy for creating novel NIR emitters.

6.
ACS Appl Mater Interfaces ; 13(47): 56420-56429, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34783522

RESUMEN

Achieving both the backbone order and solubility of π-conjugated polymers, which are often in a trade-off relationship, is imperative for maximizing the performance of organic solar cells. Here, we studied three different π-conjugated polymers based on thiazolothiazole (PSTz1 and POTz1) and benzobisthiazole (PNBTz1) that were combined with a benzodithiophene unit in the backbone, where PNBTz1 was newly synthesized. Because of the steric hindrance between the side chains located on neighboring heteroaromatic rings, POTz1 had a much less coplanar backbone than PSTz1 in which such a steric hindrance is absent. However, POTz1 showed higher photovoltaic performance in solar cells that used Y6 as the acceptor material. This was likely due to the significantly higher solubility of POTz1 than PSTz1, resulting in a better morphology. Interestingly, PNBTz1 was found to have markedly higher backbone coplanarity than POTz1, despite having similar steric hindrance between the side chains, most likely owing to the more extended π-electron system, whereas PNBTz1 had good solubility comparable to POTz1. As a result, PNBTz1 exhibited higher photovoltaic performance than POTz1 in the Y6-based cells: specifically, the fill factor was significantly enhanced. Our results indicate that the backbone order and solubility can be achieved by the careful molecular design, which indeed leads to higher photovoltaic performance.

7.
ACS Appl Mater Interfaces ; 13(33): 39178-39185, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34379385

RESUMEN

This work reports strategies for improving the power conversion efficiency (PCE) by capitalizing on temporal changes through the storage effect and immediate improvements by interface passivation. It is demonstrated that both strategies can be combined as shown by PCE improvement in passivated perovskite solar cells (PSCs) upon ambient storage because of trap density reduction. By analyzing the dominant charge recombination process, we find that lead-related traps in perovskite bulk, rather than at the surface, are the recombination centers in both as-fabricated and ambient-stored passivated PSCs. This emphasizes the necessity to reduce intrinsic defects in the perovskite bulk. Furthermore, storage causes temporal changes in band alignment even in passivated PSCs, contributing to PCE improvement. Building on these findings, composition engineering was employed to produce further immediate PCE improvements because of defect reduction in the bulk, achieving a PCE of 22.2%. These results show that understanding the dominant recombination mechanisms within a PSC is important to inform strategies for producing immediate and temporal PCE enhancements either by interface passivation, storage, composition engineering, or a combination of them all to fabricate highly efficient PSCs.

8.
ACS Appl Mater Interfaces ; 13(33): 39322-39330, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34374522

RESUMEN

One of the most challenging issues facing the organic photovoltaic community is to realize a high fill factor (FF) even with thick active layers. This is because the thick active layer is beneficial for photon absorption but makes charge collection difficult, which is primarily restricted by nongeminate recombination in solar cells. In this work, we have studied nongeminate recombination in four kinds of polymer solar cells based on blends of donor-conjugated polymers with different crystallinities and acceptor-conjugated polymers with a naphthalene diimide unit by using transient photovoltage and photocurrent techniques. As a result, we find that nongeminate recombination is considerably suppressed with an increasing degree of crystallinity of donor polymers, leading to a high FF of more than 0.6 even with an active layer thickness of 300 nm. The origin of such a phenomenon is further discussed in terms of variations in the states of mixed phases with a cascaded energy structure between crystalline domains and amorphous domains evaluated by conductive atomic force microscopy.

9.
ACS Appl Mater Interfaces ; 13(29): 34357-34366, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34254768

RESUMEN

Herein, we study the origin of differences in open-circuit voltage (VOC) for polymer:fullerene solar cells employing highly crystalline conjugated polymers (PTzBT) based on the same thiophene-thiazolothiazole backbone with different side chains. By analyzing the temperature dependence of VOC and cyclic voltammogram, we find that the difference in VOC originates in the different cascaded energy structures for the highest occupied molecular orbital (HOMO) levels in the interfacial mixed phase. Furthermore, we find that this is due to the stabilization of HOMO caused by the different branching of side chains on the basis of density functional theory calculation. Finally, we discuss the molecular design strategy based on side-chain engineering for ideal interfacial cascaded energy structures leading to higher VOC and photocurrent simultaneously.

10.
J Chem Phys ; 153(16): 161102, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33138408

RESUMEN

In this paper, we introduce a new strategy for improving the efficiency of upconversion emissions based on triplet-triplet exciton annihilation (TTA-UC) in the solid state. We designed a ternary blend system consisting of a triplet sensitizer (TS), an exciton-transporting host polymer, and a small amount of an annihilator in which the triplet-state energies of the TS, host, and annihilator decrease in this order. The key idea underpinning this concept involves first transferring the triplet excitons generated by the TS to the host and then to the annihilator, driven by the cascaded triplet energy landscape. Because of the small annihilator blend ratio, the local density of triplet excitons in the annihilator domain is higher than those in conventional binary TS/annihilator systems, which is advantageous for TTA-UC because TTA is a density-dependent bimolecular reaction. We tracked the triplet exciton dynamics in the ternary blend film by transient absorption spectroscopy. Host triplet excitons are generated through triplet energy transfer from the TS following intersystem crossing in the TS. These triplet excitons then diffuse in the host domain and accumulate in the annihilator domain. The accumulated triplet excitons undergo TTA to generate singlet excitons that are higher in energy than the excitation source, resulting in UC emission. Based on the excitation-intensity and blend-ratio dependences of TTA-UC, we found that our concept has a positive impact on accelerating TTA.

11.
Nat Commun ; 11(1): 3008, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546736

RESUMEN

The toxicity of lead perovskite hampers the commercialization of perovskite-based photovoltaics. While tin perovskite is a promising alternative, the facile oxidation of tin(II) to tin(IV) causes a high density of defects, resulting in lower solar cell efficiencies. Here, we show that tin(0) nanoparticles in the precursor solution can scavenge tin(IV) impurities, and demonstrate that this treatment leads to effectively tin(IV)-free perovskite films with strong photoluminescence and prolonged decay lifetimes. These nanoparticles are generated by the selective reaction of a dihydropyrazine derivative with the tin(II) fluoride additive already present in the precursor solution. Using this nanoparticle treatment, the power conversion efficiency of tin-based solar cells reaches 11.5%, with an open-circuit voltage of 0.76 V. Our nanoparticle treatment is a simple and broadly effective method that improves the purity and electrical performance of tin perovskite films.

12.
Chem Asian J ; 15(6): 796-801, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32012465

RESUMEN

Herein, the hole transport in a quinoxaline-thiophene based conjugated polymer (PTQ1) mixed with an insulating polystyrene (PS) was studied by macroscopic and local current density-voltage characteristics measurements. As a result, we found that the hole conductivity in PTQ1 : PS blends increases as the weight ratio of PTQ1 is reduced down to 20 wt%. This is mainly ascribed to increases in mobility because the charge carrier density would be constant in the insulating PS matrix. With decreasing PTQ1 weight ratio in the blends, the absorption bandwidth of PTQ1 and additional emission due to excimer decreased, suggesting that interchain interactions are suppressed. By measuring the temperature-dependent conductivity, we also found that the activation energy for the hole conductivity is smaller in PTQ1 : PS blends than in PTQ1 neat films. These findings suggest that trap sites decrease because of the suppressed interaction between PTQ1 chains in blend films. We also measured conductive atomic force microscope images of the blend films to clarify the local conductive property. For PTQ1 neat films, a low conductive image was observed over the entire film. For PTQ1 : PS blends, on the other hand, many highly conductive spots were locally found. We thus conclude that the dilution of PTQ1 chains in the PS matrix leads to a lower formation of trap sites, resulting in more conductive transport in PTQ1 : PS blends than in PTQ1 neat films.

13.
Nanomaterials (Basel) ; 10(2)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013188

RESUMEN

Abstract: A non-fullerene molecule named Y6 was incorporated into a binary blend of PBDB-T and IT-M to further enhance photon harvesting in the near-infrared (near-IR) region. Compared with PBDB-T/IT-M binary blend devices, PBDB-T/IT-M/Y6 ternary blend devices exhibited an improved short-circuit current density (JSC) from 15.34 to 19.09 mA cm-2. As a result, the power conversion efficiency (PCE) increased from 10.65% to 12.50%. With an increasing weight ratio of Y6, the external quantum efficiency (EQE) was enhanced at around 825 nm, which is ascribed to the absorption of Y6. At the same time, EQE was also enhanced at around 600-700 nm, which is ascribed to the absorption of IT-M, although the optical absorption intensity of IT-M decreased with increasing weight ratio of Y6. This is because of the efficient energy transfer from IT-M to Y6, which can collect the IT-M exciton lost in the PBDB-T/IT-M binary blend. Interestingly, the EQE spectra of PBDB-T/IT-M/Y6 ternary blend devices were not only increased but also red-shifted in the near-IR region with increasing weight ratio of Y6. This finding suggests that the absorption spectrum of Y6 is dependent on the weight ratio of Y6, which is probably due to different aggregation states depending on the weight ratio. This aggregate property of Y6 was also studied in terms of surface energy.

14.
Chem Sci ; 11(12): 3250-3257, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-34122832

RESUMEN

Electron-acceptor small-molecules possessing a long exciton lifetime and a narrow energy band gap, opposing the energy gap law, are highly desirable for high-performance organic photovoltaics (OPVs) by realizing their efficient light-harvesting ability (LH), exciton diffusion (ED), and charge transfer (CT). Toward this goal, we designed an acceptor-donor-acceptor (A-D-A) type nonfullerene acceptor (NFA), TACIC, having an electron-donating, self-assembling two-dimensional (2D) nanographene unit, thienoazacoronene, at the center with electron-withdrawing groups at both ends. The TACIC film exhibited a narrow band gap (1.59 eV) with excellent LH. Surprisingly, the TACIC film showed an extremely long exciton lifetime (1.59 ns), suppressing undesirable nonradiative decay by its unique self-assembling behavior. When combined with a conjugated polymer donor, PBDB-T, slow ED and CT were observed (60 ps) with the excitation of TACIC owing to the large TACIC domain sizes. Nevertheless, the unusually high efficiencies of ED and CT (96% in total) were achieved by the long TACIC exciton lifetime. Additionally, unusual energy transfer (EnT) from the excited PBDB-T to TACIC was seen, demonstrating its dual LH role. The OPV device with PBDB-T and TACIC showed a high incident photon-to-current efficiency (IPCE) exceeding 70% at up to 710 nm and a power conversion efficiency of ∼10%. This result will open up avenues for a rational strategy of OPVs where LH, ED, and CT from the acceptor side as well as LH, EnT, ED, and CT from the donor side can be better designed by using 2D nanographene as a promising building block for high-performance A-D-A type NFAs.

15.
ACS Appl Mater Interfaces ; 11(26): 23410-23416, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31252499

RESUMEN

N-type (electron-transporting) semiconducting polymers are essential materials for the development of truly plastic electronic devices. Here, we synthesized for the first time dithiazolylthienothiophene bisimide (TzBI), as a new family for imide-based electron-deficient π-conjugated systems, and semiconducting polymers by incorporating TzBI into the π-conjugated backbone as the building unit. The TzBI-based polymers are found to have deep frontier molecular orbital energy levels and wide optical bandgaps compared to the dithienylthienothiophene bisimide (TBI) counterpart. It is also found that TzBI can promote the π-π intermolecular interactions of the polymer backbones relative to TBI most probably because the thiazole ring, which replaced the thiophene ring, at the end of the framework gives a more coplanar backbone. In fact, TzBI-based polymers function as the n-type semiconducting material in both organic field-effect transistor (OFET) and organic photovoltaic (OPV) devices. Notably, one of the TzBI-based polymers provides a power conversion efficiency of 3.3% in the all-polymer OPV device, which could be high for a low-molecular-weight polymer (<10 kDa). Interestingly, while many of the n-type semiconducting polymers utilized in OPVs have narrow bandgaps, the TzBI-based polymers have wide bandgaps. This is highly beneficial for complementing the visible to near-IR light absorption range when blended with p-type narrow bandgap polymers that have been widely developed in the last decade. The results demonstrate great promise and possibility of TzBI as the building unit for n-type semiconducting polymers.

16.
Chemphyschem ; 20(20): 2683-2688, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31077528

RESUMEN

Recently, ternary blend polymer solar cells have attracted great attention to improve a short-circuit current density (JSC ) effectively, because complementary absorption bands can harvest the solar light over a wide wavelength range from visible to near-IR region. Interestingly, some ternary blend solar cells have shown improvements not only in JSC but also in fill factor (FF). Previously, we also reported that a ternary blend solar cell based on a low-bandgap polymer (PTB7-Th), a wide-bandgap polymer (PDCBT), and a fullerene derivative (PCBM) exhibited a higher FF than their binary analogues. Herein, we study charge transport in PTB7-Th/PDCBT/PCBM ternary blend films to address the origin of the improvement in FF. We found that hole polarons are located in PTB7-Th domains and their mobility is enhanced in the ternary blend film.

17.
Phys Chem Chem Phys ; 20(17): 12193-12199, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29683467

RESUMEN

Herein, we theoretically and experimentally investigated the mechanisms of charge separation processes of organic thin-film solar cells. PTB7, PTB1, and PTBF2 have been chosen as donors and PC71BM has been chosen as an acceptor considering that effective charge generation depends on the difference between the material combinations. Experimental results of transient absorption spectroscopy show that the hot process is a key step for determining external quantum efficiency (EQE) in these systems. From the quantum chemistry calculations, it has been found that EQE tends to increase as the transferred charge, charge transfer distance, and variation of dipole moments between the ground and excited states of the donor/acceptor complexes increase; this indicates that these physical quantities are a good descriptor to assess the donor-acceptor charge transfer quality contributing to the solar cell performance. We propose that designing donor/acceptor interfaces with large values of charge transfer distance and variation of dipole moments of the donor/acceptor complexes is a prerequisite for developing high-efficiency polymer/PCBM solar cells.

18.
ACS Appl Mater Interfaces ; 9(23): 19988-19997, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28553705

RESUMEN

Herein, the open-circuit voltage (VOC) loss in both polymer solar cells and perovskite solar cells is quantitatively analyzed by measuring the temperature dependence of VOC to discuss the difference in the primary loss mechanism of VOC between them. As a result, the photon energy loss for polymer solar cells is in the range of about 0.7-1.4 eV, which is ascribed to temperature-independent and -dependent loss mechanisms, while that for perovskite solar cells is as small as about 0.5 eV, which is ascribed to a temperature-dependent loss mechanism. This difference is attributed to the different charge generation and recombination mechanisms between the two devices. The potential strategies for the improvement of VOC in both solar cells are further discussed on the basis of the experimental data.

19.
ACS Appl Mater Interfaces ; 9(18): 15615-15622, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28437063

RESUMEN

Charge transport in intermixed regions of all-polymer solar cells based on a blend of poly(3-hexylthiophene) (P3HT; electron donor) with poly[2,7-(9,9-didodecylfluorene)-alt-5,5-(4',7'-bis(2-thienyl)-2',1',3'-benzothiadiazole)] (PF12TBT; electron acceptor) was studied by conductive atomic force microscopy (C-AFM). For a blend film fabricated from a chlorobenzene solution, intermixed regions were detected between the P3HT-rich and PF12TBT-rich domains. The overall hole current in the intermixed regions remained almost constant, both before and after thermal annealing at 80 °C, but it increased in the P3HT-rich domains. For a blend film fabricated from a chloroform solution, the entire observed area constituted an intermixed region, both before and after thermal annealing. The overall hole current in this film was significantly improved following thermal annealing at 120 °C. These finely mixed structures with efficient charge transport yielded a maximum power conversion efficiency of 3.5%. The local charge-transport properties in the intermixed region, as observed via C-AFM, was found to be closely related to the photovoltaic properties, rather than the bulk-averaged properties or topological features.

20.
J Am Chem Soc ; 138(32): 10265-75, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27448181

RESUMEN

The development of semiconducting polymers is imperative to improve the performance of polymer-based solar cells (PSCs). In this study, new semiconducting polymers based on naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole (NTz), PNTz4TF2 and PNTz4TF4, having 3,3'-difluoro-2,2'-bithiophene and 3,3',4,4'-tetrafluoro-2,2'-bithiophene, respectively, are designed and synthesized. These polymers possess a deeper HOMO energy level than their counterpart, PNTz4T, which results in higher open-circuit voltages in solar cells. This concequently reduces the photon energy loss that is one of the most important issues surrounding PSCs. The PNTz4TF4 cell exhibits up to 6.5% power conversion efficiency (PCE), whereas the PNTz4TF2 cell demonstrates outstanding device performance with as high as 10.5% PCE, which is quite high for PSCs. We further discuss the performances of the PSCs based on these polymers by correlating the charge generation and recombination dynamics with the polymer structure and ordering structure. We believe that the results provide new insights into the design of semiconducting polymers and that there is still much room for improvement of PSC efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...