Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4600, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816382

RESUMEN

Electron transfer is a fundamental energy conversion process widely present in synthetic, industrial, and natural systems. Understanding the electron transfer process is important to exploit the uniqueness of the low-dimensional van der Waals (vdW) heterostructures because interlayer electron transfer produces the function of this class of material. Here, we show the occurrence of an electron transfer process in one-dimensional layer-stacking of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). This observation makes use of femtosecond broadband optical spectroscopy, ultrafast time-resolved electron diffraction, and first-principles theoretical calculations. These results reveal that near-ultraviolet photoexcitation induces an electron transfer from the conduction bands of CNT to BNNT layers via electronic decay channels. This physical process subsequently generates radial phonons in the one-dimensional vdW heterostructure material. The gathered insights unveil the fundamentals physics of interfacial interactions in low dimensional vdW heterostructures and their photoinduced dynamics, pushing their limits for photoactive multifunctional applications.

2.
J Phys Chem A ; 126(36): 6301-6308, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36063425

RESUMEN

We developed a multitimescale time-resolved electron diffraction setup by electrically synchronizing a nanosecond laser with our table-top picosecond time-resolved electron diffractometer. The setup covers the photoinduced structural dynamics of target materials at timescales ranging from picoseconds to submilliseconds. Using this setup, we sequentially observed the ultraviolet (UV) photoinduced bond dissociation, radical formation, and relaxation dynamics of the oxygen atoms in the epoxy functional group on the basal plane of graphene oxide (GO). The results show that oxygen radicals formed via UV photoexcitation on the basal plane of GO in several tens of picoseconds and then relaxed back to the initial state on the microsecond timescale. The results of first-principles calculations also support the formation of oxygen radicals in the excited state on an early timescale. These results are essential for the further discussion of the reactivities on the basal plane of GO, such as catalytic reactions and antibacterial and antiviral activities. The results also suggest that the multitimescale time-resolved electron diffraction system is a promising tool for laboratory-based molecular dynamics studies of materials and chemical systems.

3.
ACS Nano ; 13(9): 10103-10112, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31450883

RESUMEN

A two-dimensional nanocarbon, graphene, has attracted substantial interest due to its excellent properties. The reduction of graphene oxide (GO) has been investigated for the mass production of graphene used in practical applications. Different reduction processes produce different properties in graphene, affecting the performance of the final materials or devices. Therefore, an understanding of the mechanisms of GO reduction is important for controlling the properties of functional two-dimensional systems. Here, we determined the average structure of reduced GO prepared via heating and photoexcitation and clearly distinguished their reduction mechanisms using ultrafast time-resolved electron diffraction, time-resolved infrared vibrational spectroscopy, and time-dependent density functional theory calculations. The oxygen atoms of epoxy groups are selectively removed from the basal plane of GO by photoexcitation (photon mode), in stark contrast to the behavior observed for the thermal reduction of hydroxyl and epoxy groups (thermal mode). The difference originates from the selective excitation of epoxy bonds via an electronic transition due to their antibonding character. This work will enable the preparation of the optimum GO for the intended applications and expands the application scope of two-dimensional systems.

4.
J Phys Chem Lett ; 6(15): 2944-9, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26267186

RESUMEN

In recent years, free-electron lasers operating in the true X-ray regime have opened up access to the femtosecond-scale dynamics induced by deep inner-shell ionization. We have investigated charge creation and transfer dynamics in the context of molecular Coulomb explosion of a single molecule, exposed to sequential deep inner-shell ionization within an ultrashort (10 fs) X-ray pulse. The target molecule was CH3I, methane sensitized to X-rays by halogenization with a heavy element, iodine. Time-of-flight ion spectroscopy and coincident ion analysis was employed to investigate, via the properties of the atomic fragments, single-molecule charge states of up to +22. Experimental findings have been compared with a parametric model of simultaneous Coulomb explosion and charge transfer in the molecule. The study demonstrates that including realistic charge dynamics is imperative when molecular Coulomb explosion experiments using short-pulse facilities are performed.

5.
J Chem Phys ; 140(18): 18A529, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24832337

RESUMEN

We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at the peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 10(6)-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of techniques are employed for efficiently calculating the long-range exact exchange correction and excited-state forces. The NAQMD trajectories are analyzed to extract the rates of various excitonic processes, which are then used in KMC simulation to study the dynamics of the global exciton flow network. This has allowed the study of large-scale photoexcitation dynamics in 6400-atom amorphous molecular solid, reaching the experimental time scales.

6.
J Chem Phys ; 138(13): 134504, 2013 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-23574241

RESUMEN

The static and dynamic properties of liquid ZnCl2 under pressure are investigated by ab initio molecular-dynamics simulations. The pressure range covers ambient to approximately 80 GPa. The ZnCl4 tetrahedra, which are rather stable at ambient pressure, are shown to deform and collapse with increasing pressure while maintaining an almost constant nearest-neighbor distance between Zn and Cl atoms. The average coordination number of Cl atoms around Zn atoms increases monotonically with pressure, from four at ambient pressure to seven at approximately 80 GPa. Although the self-diffusion coefficients of Zn and Cl atoms, d(Zn) and d(Cl), are almost the same at ambient pressure, the difference between them increases with pressure. At around 10 GPa, d(Zn) is about two times larger than d(Cl). Under further compression, this dynamic asymmetry becomes smaller. The microscopic mechanism of the appearance of the dynamic asymmetry is discussed in relation to the pressure dependence of the local structure.

7.
Dalton Trans ; 41(31): 9519-25, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22751754

RESUMEN

The tripodal ligands composed of the 1,3,5-trisubstituted cyclohexyl moiety as a molecular scaffold and 2-phenylpyridyl moieties as a coordination site were designed. The homoleptic cyclometalated fac-Ir(C^N)(3) complexes could be obtained by the reaction of IrCl(3)·nH(2)O with the designed tripodal ligands. The single crystal X-ray structure determination confirmed the fac configuration and a distorted octahedral geometry with three intramolecular cyclometalated 2-phenylpyridyl ligands surrounding the iridium metal center. Also, the cyclohexyl scaffold was found to serve as a flexible scaffold to induce the fac configuration. The thus-obtained homoleptic cyclometalated fac-Ir(C^N)(3) complexes exhibited a broad emission band in the emission spectra at 298 K.

8.
J Chem Phys ; 136(18): 184705, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22583307

RESUMEN

Exciton dynamics at an interface between an electron donor, rubrene, and a C(60) acceptor is studied by nonadiabatic quantum molecular dynamics simulation. Simulation results reveal an essential role of the phenyl groups in rubrene in increasing the charge-transfer rate by an order-of-magnitude. The atomistic mechanism of the enhanced charge transfer is found to be the amplification of aromatic breathing modes by the phenyl groups, which causes large fluctuations of electronic excitation energies. These findings provide insight into molecular structure design for efficient solar cells, while explaining recent experimental observations.

9.
Chem Asian J ; 6(12): 3206-13, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21954093

RESUMEN

The chirality organization of polyaniline-unit molecules was achieved by the introduction of amino acid pendant groups through intramolecular hydrogen bonding, which plays an important role in the stabilization of the chirality-organized redox species. Another interesting feature of the synthesized polyaniline-unit molecules is the luminescent switching properties based on the redox states of the phenylenediamine moiety.


Asunto(s)
Aminoácidos/química , Compuestos de Anilina/química , Cristalografía por Rayos X , Técnicas Electroquímicas , Enlace de Hidrógeno , Conformación Molecular , Oxidación-Reducción , Estereoisomerismo
10.
J Chem Phys ; 134(24): 244702, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21721652

RESUMEN

The atomistic mechanism of rapid hydrogen production from water by an aluminum cluster is investigated by ab initio molecular dynamics simulations on a parallel computer. A low activation-barrier mechanism of hydrogen production is found, in which a pair of Lewis acid and base sites on the cluster surface plays a crucial role. Hydrogen production is assisted by rapid proton transport in water via a chain of hydrogen-bond switching events similar to the Grotthuss mechanism, where hydroxide ions are converted to water molecules at the Lewis-acid sites and hydrogen atoms are supplied at the Lewis-base sites. The activation free energy is estimated along various reaction paths associated with hydrogen production, and the corresponding reaction rates are discussed based on the transition state theory.

11.
J Org Chem ; 75(22): 7909-12, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-20958060

RESUMEN

Aniline oligomers bearing amino acid moieties were designed by the introduction of L/D-Ala-OMe into aniline oligomers to induce chirality organization of the π-conjugated aniline oligomer moieties, wherein the formation of intramolecular hydrogen bonds was demonstrated to play an important role to regulate the aniline oligomer moieties conformationally.


Asunto(s)
Aminoácidos/química , Compuestos de Anilina/química , Oligopéptidos/química , Compuestos de Anilina/síntesis química , Cristalografía por Rayos X , Enlace de Hidrógeno , Conformación Molecular , Estereoisomerismo
12.
Phys Rev Lett ; 104(12): 126102, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20366551

RESUMEN

Hydrogen production by metal particles in water could provide a renewable energy cycle, if its reaction kinetics is accelerated. Here, ab initio molecular dynamics simulation reveals rapid hydrogen production from water by a cluster (or superatom) consisting of a magic number of aluminum atoms, Al{n} (for instance, n=12 or 17). We find a low activation-barrier mechanism, in which a pair of Lewis-acid and base sites on the Al{n} surface preferentially catalyzes hydrogen production. This reaction is immensely assisted by rapid proton transport in water via a chain of hydrogen-bond switching events similar to the Grotthuss mechanism, which converts hydroxide ions to water molecules at the Lewis-acid sites and supplies hydrogen atoms at the Lewis-base sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...