Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140870

RESUMEN

Fertilization relies on pollen mother cells able to transit from mitosis to meiosis to supply gametes. This process involves remarkable changes at the molecular, cellular and physiological levels including (but not limited to) remodelling of the cell wall. During the meiosis onset, cellulose content at the pollen mother cell walls gradually declines with the concurrent deposition of the polysaccharide callose in anther locules. We aim to understand the biological significance of cellulose-to-callose turnover in pollen mother cells walls using electron microscopic analyses of rice flowers. Our observations indicate that in wild type rice anthers, the mitosis-to-meiosis transition coincides with a gradual reduction in the number of cytoplasmic connections called plasmodesmata. A mutant in the Oryza sativa callose synthase GSL5 (Osgsl5-3), impaired in callose accumulation in premeiotic and meiotic anthers, displayed a greater reduction in plasmodesmata frequency among pollen mother cells and tapetal cells suggesting a role for callose in plasmodesmata maintenance. In addition, a significant increase in extracellular distance between pollen mother cells and impaired premeiotic cell shaping was observed in the Osgsl5-3 mutant. The results suggest that callose-to-cellulose turnover during mitosis-meiosis transition is necessary to maintain cell-to-cell connections and optimal extracellular distance among the central anther locular cells. Findings of this study contribute to our understanding of the regulatory influence of callose metabolism during meiosis initiation in flowering plants.

2.
Front Mol Neurosci ; 16: 1280024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098939

RESUMEN

The prevalence of allergic conjunctivitis in itchy eyes has increased constantly worldwide owing to environmental pollution. Currently, anti-allergic and antihistaminic eye drops are used; however, there are many unknown aspects about the neural circuits that transmit itchy eyes. We focused on the gastrin-releasing peptide (GRP) and GRP receptor (GRPR), which are reportedly involved in itch transmission in the spinal somatosensory system, to determine whether the GRP system is involved in itch neurotransmission of the eyes in the trigeminal sensory system. First, the instillation of itch mediators, such as histamine (His) and non-histaminergic itch mediator chloroquine (CQ), exhibited concentration-dependent high levels of eye scratching behavior, with a significant sex differences observed in the case of His. Histological analysis revealed that His and CQ significantly increased the neural activity of GRPR-expressing neurons in the caudal part of the spinal trigeminal nucleus of the medulla oblongata in GRPR transgenic mice. We administered a GRPR antagonist or bombesin-saporin to ablate GRPR-expressing neurons, followed by His or CQ instillation, and observed a decrease in CQ-induced eye-scratching behavior in the toxin experiments. Intracisternal administration of neuromedin C (NMC), a GRPR agonist, resulted in dose-dependent excessive facial scratching behavior, despite the absence of an itch stimulus on the face. To our knowledge, this is the first study to demonstrate that non-histaminergic itchy eyes were transmitted centrally via GRPR-expressing neurons in the trigeminal sensory system, and that NMC in the medulla oblongata evoked facial itching.

3.
Genes Cells ; 14(10): 1141-54, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19735483

RESUMEN

The intestine plays an essential role in organism-wide regulatory networks in both vertebrates and invertebrates. In Caenorhabditis elegans, class 1 flr genes (flr-1, flr-3 and flr-4) act in the intestine and control growth rates and defecation cycle periods, while class 2 flr genes (flr-2, flr-5, flr-6 and flr-7) are characterized by mutations that suppress the slow growth of class 1 flr mutants. This study revealed that flr-2 gene controls antibacterial defense and intestinal color, confirming that flr-2 regulates intestinal functions. flr-2 encoded the only glycoprotein hormone alpha subunit in C. elegans and was expressed in certain neurons. Furthermore, FLR-2 bound to another secretory protein GHI-1, which belongs to a family of lipid- and lipopolysaccharide-binding proteins. A ghi-1 deletion mutation partially suppressed the short defecation cycle periods of class 1 flr mutants, and this effect was enhanced by flr-2 mutations. Thus, FLR-2 acts as a signaling molecule for the neural control of intestinal functions, which is achieved in a functional network involving class 1 and class 2 flr genes as well as ghi-1. These results are informative to studies of glycoprotein hormone signaling in higher animals.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Hormonas Glicoproteicas de Subunidad alfa/metabolismo , Intestinos/inervación , Intestinos/fisiología , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Escherichia coli/fisiología , Hormonas Glicoproteicas de Subunidad alfa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno , Esperanza de Vida , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Neuronas/citología , Neuronas/metabolismo , Pigmentación , Unión Proteica , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...