Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cancers (Basel) ; 15(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38001568

RESUMEN

Liposarcomas (LPSs) are a heterogeneous group of malignancies that arise from adipose tissue. Although LPSs are among the most common soft-tissue sarcoma subtypes, precision medicine treatments are not currently available. To discover LPS-subtype-specific therapy targets, we investigated RNA sequenced transcriptomes of 131 clinical LPS tissue samples and compared the data with a transcriptome database that contained 20,218 samples from 95 healthy tissues and 106 cancerous tissue types. The identified genes were referred to the NCATS BioPlanet library with Enrichr to analyze upregulated signaling pathways. PDE3A protein expression was investigated with immunohistochemistry in 181 LPS samples, and PDE3A and SLFN12 mRNA expression with RT-qPCR were investigated in 63 LPS samples. Immunoblotting and cell viability assays were used to study LPS cell lines and their sensitivity to PDE3A modulators. We identified 97, 247, and 37 subtype-specific, highly expressed genes in dedifferentiated, myxoid, and pleomorphic LPS subtypes, respectively. Signaling pathway analysis revealed a highly activated hedgehog signaling pathway in dedifferentiated LPS, phospholipase c mediated cascade and insulin signaling in myxoid LPS, and pathways associated with cell proliferation in pleomorphic LPS. We discovered a strong association between high PDE3A expression and myxoid LPS, particularly in high-grade tumors. Moreover, myxoid LPS samples showed elevated expression levels of SLFN12 mRNA. In addition, PDE3A- and SLFN12-coexpressing LPS cell lines SA4 and GOT3 were sensitive to PDE3A modulators. Our results indicate that PDE3A modulators are promising drugs to treat myxoid LPS. Further studies are required to develop these drugs for clinical use.

2.
BMC Genomics ; 12: 618, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22185580

RESUMEN

BACKGROUND: Subtilisin/kexin-like proprotein convertase (PCSK) enzymes have important regulatory function in a wide variety of biological processes. PCSKs proteolytically process at a target sequence that contains basic amino acids arginine and lysine, which results in functional maturation of the target protein. In vitro assays have showed significant biochemical redundancy between the seven family members, but the phenotypes of PCSK deficient mice and patients carrying an inactive PCSK allele argue for a specific biological function. Modeling the structures of individual PCSK enzymes has offered little insights into the specificity determinants. However, previous studies have shown that there can be a coordinated expression between a PCSK and its target molecule. Here, we have surveyed the putative PCSK target proteins using genome-wide expression correlation analysis and cleavage site prediction algorithms. RESULTS: We first performed a gene expression correlation analysis over the whole genome for all PCSK enzymes. PCSKs were found to cluster differently based on the strength of correlations. The screen for putative PCSK target proteins showed a significant enrichment (p-values from 1.2e-4 to < 1.0e-10) of putative targets among the most positively correlating genes for most PCSKs. Interestingly, there was no enrichment in putative targets among the genes that correlated positively with the biologically redundant PCSK7, whereas PCSK5 showed an inverse correlation. PCSKs also showed a highly variable degree of shared target genes that were identified by expression correlation and cleavage site prediction. Multiple alignments were used to evaluate the putative targets to pinpoint the important residues for the substrate recognition. Finally, we validated our approach and identified biochemically PAPPA1 and ADAMTS6 as novel targets for FURIN proteolytic activity. CONCLUSIONS: Most PCSK enzymes display strong positive expression correlation with predicted target proteins in our genome-wide analysis. We also show that expression correlation screen combined with a cleavage site-prediction analysis can be used to identify novel bona fide target molecules for PCSKs. Exploring the positively correlating genes can thus offer additional insights into the biology of proprotein convertases.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proproteína Convertasas/metabolismo , Animales , Ratones , Modelos Moleculares , Especificidad por Sustrato
3.
Genome Med ; 3(9): 63, 2011 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-21955394

RESUMEN

We present a new method to analyze cancer of unknown primary origin (CUP) samples. Our method achieves good results with classification accuracy (88% leave-one-out cross validation for primary tumors from 56 categories, 78% for CUP samples), and can also be used to study CUP samples on a gene-by-gene basis. It is not tied to any a priori defined gene set as many previous methods, and is adaptable to emerging new information.

4.
BioData Min ; 4: 5, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21453538

RESUMEN

BACKGROUND: Gene expression microarray data have been organized and made available as public databases, but the utilization of such highly heterogeneous reference datasets in the interpretation of data from individual test samples is not as developed as e.g. in the field of nucleotide sequence comparisons. We have created a rapid and powerful approach for the alignment of microarray gene expression profiles (AGEP) from test samples with those contained in a large annotated public reference database and demonstrate here how this can facilitate interpretation of microarray data from individual samples. METHODS: AGEP is based on the calculation of kernel density distributions for the levels of expression of each gene in each reference tissue type and provides a quantitation of the similarity between the test sample and the reference tissue types as well as the identity of the typical and atypical genes in each comparison. As a reference database, we used 1654 samples from 44 normal tissues (extracted from the Genesapiens database). RESULTS: Using leave-one-out validation, AGEP correctly defined the tissue of origin for 1521 (93.6%) of all the 1654 samples in the original database. Independent validation of 195 external normal tissue samples resulted in 87% accuracy for the exact tissue type and 97% accuracy with related tissue types. AGEP analysis of 10 Duchenne muscular dystrophy (DMD) samples provided quantitative description of the key pathogenetic events, such as the extent of inflammation, in individual samples and pinpointed tissue-specific genes whose expression changed (SAMD4A) in DMD. AGEP analysis of microarray data from adipocytic differentiation of mesenchymal stem cells and from normal myeloid cell types and leukemias provided quantitative characterization of the transcriptomic changes during normal and abnormal cell differentiation. CONCLUSIONS: The AGEP method is a widely applicable method for the rapid comprehensive interpretation of microarray data, as proven here by the definition of tissue- and disease-specific changes in gene expression as well as during cellular differentiation. The capability to quantitatively compare data from individual samples against a large-scale annotated reference database represents a widely applicable paradigm for the analysis of all types of high-throughput data. AGEP enables systematic and quantitative comparison of gene expression data from test samples against a comprehensive collection of different cell/tissue types previously studied by the entire research community.

5.
PLoS One ; 6(2): e17259, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21365010

RESUMEN

BACKGROUND: Meta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a given tumour type ('outlier genes'), a hallmark of potential oncogenes. METHODOLOGY: A new statistical method (the gene tissue index, GTI) was developed by modifying and adapting algorithms originally developed for statistical problems in economics. We compared the potential of the GTI to detect outlier genes in meta-datasets with four previously defined statistical methods, COPA, the OS statistic, the t-test and ORT, using simulated data. We demonstrated that the GTI performed equally well to existing methods in a single study simulation. Next, we evaluated the performance of the GTI in the analysis of combined Affymetrix gene expression data from several published studies covering 392 normal samples of tissue from the central nervous system, 74 astrocytomas, and 353 glioblastomas. According to the results, the GTI was better able than most of the previous methods to identify known oncogenic outlier genes. In addition, the GTI identified 29 novel outlier genes in glioblastomas, including TYMS and CDKN2A. The over-expression of these genes was validated in vivo by immunohistochemical staining data from clinical glioblastoma samples. Immunohistochemical data were available for 65% (19 of 29) of these genes, and 17 of these 19 genes (90%) showed a typical outlier staining pattern. Furthermore, raltitrexed, a specific inhibitor of TYMS used in the therapy of tumour types other than glioblastoma, also effectively blocked cell proliferation in glioblastoma cell lines, thus highlighting this outlier gene candidate as a potential therapeutic target. CONCLUSIONS/SIGNIFICANCE: Taken together, these results support the GTI as a novel approach to identify potential oncogene outliers and drug targets. The algorithm is implemented in an R package (Text S1).


Asunto(s)
Algoritmos , Biología Computacional/métodos , Perfilación de la Expresión Génica/estadística & datos numéricos , Análisis por Micromatrices/estadística & datos numéricos , Astrocitoma/genética , Neoplasias Encefálicas/genética , Interpretación Estadística de Datos , Perfilación de la Expresión Génica/métodos , Estudios de Asociación Genética/métodos , Glioblastoma/genética , Humanos , Análisis por Micromatrices/métodos , Modelos Teóricos , Reconocimiento de Normas Patrones Automatizadas/métodos , Programas Informáticos , Células Tumorales Cultivadas
6.
PLoS One ; 5(12): e15068, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-21151926

RESUMEN

Kinases play key roles in cell signaling and represent major targets for drug development, but the regulation of their activation and their associations with health and disease have not been systematically analyzed. Here, we carried out a bioinformatic analysis of the expression levels of 459 human kinase genes in 5681 samples consisting of 44 healthy and 55 malignant human tissues. Defining the tissues where the kinase genes were transcriptionally active led to a functional genomic taxonomy of the kinome and a classification of human tissues and disease types based on the similarity of their kinome gene expression. The co-expression network around each of the kinase genes was defined in order to determine the functional context, i.e. the biological processes that were active in the cells and tissues where the kinase gene was expressed. Strong associations for individual kinases were found for mitosis (69 genes, including AURKA and BUB1), cell cycle control (73 genes, including PLK1 and AURKB), DNA repair (49 genes, including CHEK1 and ATR), immune response (72 genes, including MATK), neuronal (131 genes, including PRKCE) and muscular (72 genes, including MYLK2) functions. We then analyzed which kinase genes gain or lose transcriptional activity in the development of prostate and lung cancers and elucidated the functional associations of individual cancer associated kinase genes. In summary, we report here a systematic classification of kinases based on the bioinformatic analysis of their expression in human tissues and diseases, as well as grouping of tissues and tumor types according to the similarity of their kinome transcription.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Ciclo Celular , Biología Computacional/métodos , Bases de Datos Genéticas , Regulación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Genómica , Humanos , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal , Transcripción Genética
7.
BMC Cancer ; 10: 181, 2010 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-20444257

RESUMEN

BACKGROUND: Neuroblastoma has successfully served as a model system for the identification of neuroectoderm-derived oncogenes. However, in spite of various efforts, only a few clinically useful prognostic markers have been found. Here, we present a framework, which integrates DNA, RNA and tissue data to identify and prioritize genetic events that represent clinically relevant new therapeutic targets and prognostic biomarkers for neuroblastoma. METHODS: A single-gene resolution aCGH profiling was integrated with microarray-based gene expression profiling data to distinguish genetic copy number alterations that were strongly associated with transcriptional changes in two neuroblastoma cell lines. FISH analysis using a hotspot tumor tissue microarray of 37 paraffin-embedded neuroblastoma samples and in silico data mining for gene expression information obtained from previously published studies including up to 445 healthy nervous system samples and 123 neuroblastoma samples were used to evaluate the clinical significance and transcriptional consequences of the detected alterations and to identify subsequently activated gene(s). RESULTS: In addition to the anticipated high-level amplification and subsequent overexpression of MYCN, MEIS1, CDK4 and MDM2 oncogenes, the aCGH analysis revealed numerous other genetic alterations, including microamplifications at 2p and 12q24.11. Most interestingly, we identified and investigated the clinical relevance of a previously poorly characterized amplicon at 12q24.31. FISH analysis showed low-level gain of 12q24.31 in 14 of 33 (42%) neuroblastomas. Patients with the low-level gain had an intermediate prognosis in comparison to patients with MYCN amplification (poor prognosis) and to those with no MYCN amplification or 12q24.31 gain (good prognosis) (P = 0.001). Using the in silico data mining approach, we identified elevated expression of five genes located at the 12q24.31 amplicon in neuroblastoma (DIABLO, ZCCHC8, RSRC2, KNTC1 and MPHOSPH9). Among these, DIABLO showed the strongest activation suggesting a putative role in neuroblastoma progression. CONCLUSIONS: The presented systematic and rapid framework, which integrates aCGH, gene expression and tissue data to obtain novel targets and biomarkers for cancer, identified a low-level gain of the 12q24.31 as a potential new biomarker for neuroblastoma progression. Furthermore, results of in silico data mining suggest a new neuroblastoma target gene, DIABLO, within this region, whose functional and therapeutic role remains to be elucidated in follow-up studies.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos Par 12 , Neuroblastoma/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Hibridación Genómica Comparativa , ADN de Neoplasias/genética , Minería de Datos , Amplificación de Genes , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Neuroblastoma/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Pronóstico , ARN Neoplásico/genética , Transcripción Genética
8.
Genome Biol ; 9(9): R139, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18803840

RESUMEN

Our knowledge on tissue- and disease-specific functions of human genes is rather limited and highly context-specific. Here, we have developed a method for the comparison of mRNA expression levels of most human genes across 9,783 Affymetrix gene expression array experiments representing 43 normal human tissue types, 68 cancer types, and 64 other diseases. This database of gene expression patterns in normal human tissues and pathological conditions covers 113 million datapoints and is available from the GeneSapiens website.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Bases de Datos Genéticas , Enfermedad/genética , Regulación de la Expresión Génica , Humanos , Especificidad de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...