Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Glia ; 72(7): 1290-1303, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38506330

RESUMEN

Astrocytes represent a diverse and morphologically complex group of glial cells critical for shaping and maintaining nervous system homeostasis, as well as responding to injuries. Understanding the origins of astroglial heterogeneity, originated from a limited number of progenitors, has been the focus of many studies. Most of these investigations have centered on protoplasmic and pial astrocytes, while the clonal relationship of fibrous astrocytes or juxtavascular astrocytes has remained relatively unexplored. In this study, we sought to elucidate the morphological diversity and clonal distribution of astrocytes across adult cortical layers, with particular emphasis on their ontogenetic origins. Using the StarTrack lineage tracing tool, we explored the characteristics of adult astroglial clones derived from single and specific progenitors at various embryonic stages. Our results revealed a heterogeneous spatial distribution of astroglial clones, characterized by variations in location, clonal size, and rostro-caudal dispersion. While a considerable proportion of clones were confined within specific cortical layers, others displayed sibling cells crossing layer boundaries. Notably, we observed a correlation between clone location and developmental stage at earlier embryonic stages, although this relationship diminished in later stages. Fibrous astrocyte clones were exclusively confined to the corpus callosum. In contrast, protoplasmic or juxtavascular clones were located in either the upper or lower cortical layers, with certain clones displayed sibling cells distributed across both regions. Our findings underscore the developmental origins and spatial distribution of astroglial clones within cortical layers, providing new insights into the interplay between their morphology, clonal sizes, and progenitor heterogeneity.


Asunto(s)
Astrocitos , Astrocitos/citología , Astrocitos/fisiología , Animales , Células Clonales , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/embriología , Ratones Transgénicos , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología
2.
Cells ; 10(11)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34831460

RESUMEN

During embryonic development, progenitor cells are progressively restricted in their potential to generate different neural cells. A specific progenitor cell type, the radial glial cells, divides symmetrically and then asymmetrically to produce neurons, astrocytes, oligodendrocytes, and NG2-glia in the cerebral cortex. However, the potential of individual progenitors to form glial lineages remains poorly understood. To further investigate the cell progeny of single pallial GFAP-expressing progenitors, we used the in vivo genetic lineage-tracing method, the UbC-(GFAP-PB)-StarTrack. After targeting those progenitors in embryonic mice brains, we tracked their adult glial progeny in lower cortical layers. Clonal analyses revealed the presence of clones containing sibling cells of either a glial cell type (uniform clones) or two different glial cell types (mixed clones). Further, the clonal size and rostro-caudal cell dispersion of sibling cells differed depending on the cell type. We concluded that pallial E14 neural progenitors are a heterogeneous cell population with respect to which glial cell type they produce, as well as the clonal size of their cell progeny.


Asunto(s)
Corteza Cerebral/citología , Células Ependimogliales/citología , Neurogénesis , Envejecimiento/fisiología , Animales , Linaje de la Célula , Células Clonales , Femenino , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Embarazo
3.
Genes (Basel) ; 11(3)2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183100

RESUMEN

The large phenotypic variation in the olfactory bulb may be related to heterogeneity in the progenitor cells. Accordingly, the progeny of subventricular zone (SVZ) progenitor cells that are destined for the olfactory bulb is of particular interest, specifically as there are many facets of these progenitors and their molecular profiles remain unknown. Using modified StarTrack genetic tracing strategies, specific SVZ progenitor cells were targeted in E12 mice embryos, and the cell fate of these neural progenitors was determined in the adult olfactory bulb. This study defined the distribution and the phenotypic diversity of olfactory bulb interneurons from specific SVZ-progenitor cells, focusing on their spatial pallial origin, heterogeneity, and genetic profile.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Bulbo Olfatorio/crecimiento & desarrollo , Células Madre/metabolismo , Animales , Movimiento Celular/genética , Interneuronas/citología , Interneuronas/metabolismo , Ventrículos Laterales , Ratones , Bulbo Olfatorio/citología , Células Madre/clasificación
4.
Toxicol Appl Pharmacol ; 377: 114627, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31202640

RESUMEN

In many neuropathologies activated microglia and macrophages cause neurotoxicity and prolong the inflammatory response. We have previously characterized the glycosphingolipid Neurostatin (Nst), which potentially reduces these detrimental mechanisms. Nst, isolated from mammalian brain, is the GD1b ganglioside with O-acetylation of the outer sialic acid residue. Using the enzyme sialate-O-acetyltransferase (SOAT), we obtained several O-acetylated gangliosides and O-propionylated GD1b (PrGD1b). In the present study we investigated the anti-inflammatory effects of these compounds. Nst and other O-acetylated gangliosides reduced nitrite production in microglial cells which were activated with lipopolysaccharide (LPS), but did not affect nitrite production after their stimulation with interferon gamma (IFNγ). Structure-activity relationship analysis showed that Nst was the most active ganglioside as inhibitor of nitrite production. Its ceramide moiety is essential for this, and both, the O-acetylation and the monosaccharide chain are important for the anti-inflammatory activity of the gangliosides. We also found that Nst reduced iNOS, IL-6 and IL-12 transcription in LPS-induced microglia, likely by inhibiting nuclear localization of NFκB. In co-cultures, Nst reduced neuronal cell death caused by LPS-activated microglia. In vivo, Nst diminished microglia activation in a mouse model of acute neuroinflammation. We propose that Nst and other O-acetylated gangliosides are neuroprotective regulators of microglia activity under both physiological and pathological conditions.


Asunto(s)
Antiinflamatorios/farmacología , Encefalitis/prevención & control , Gangliósidos/farmacología , Glicoesfingolípidos/farmacología , FN-kappa B/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Transportadores de Anión Orgánico/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA