Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 204(12): e0028722, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36374114

RESUMEN

Group A streptococcus (GAS) is a Gram-positive human bacterial pathogen responsible for more than 700 million infections annually worldwide. Beta-lactam antibiotics are the primary agents used to treat GAS infections. Naturally occurring GAS clinical isolates with decreased susceptibility to beta-lactam antibiotics attributed to mutations in PBP2X have recently been documented. This prompted us to perform a genome-wide screen to identify GAS genes that alter beta-lactam susceptibility in vitro. Using saturated transposon mutagenesis, we screened for GAS gene mutations conferring altered in vitro susceptibility to penicillin G and/or ceftriaxone, two beta-lactam antibiotics commonly used to treat GAS infections. In the aggregate, we found that inactivating mutations in 150 GAS genes are associated with altered susceptibility to penicillin G and/or ceftriaxone. Many of the genes identified were previously not known to alter beta-lactam susceptibility or affect cell wall biosynthesis. Using isogenic mutant strains, we confirmed that inactivation of clpX (Clp protease ATP-binding subunit) or cppA (CppA proteinase) resulted in decreased in vitro susceptibility to penicillin G and ceftriaxone. Deletion of murA1 (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) conferred increased susceptibility to ceftriaxone. Our results provide new information about the GAS genes affecting susceptibility to beta-lactam antibiotics. IMPORTANCE Beta-lactam antibiotics are the primary drugs prescribed to treat infections caused by group A streptococcus (GAS), an important human pathogen. However, the molecular mechanisms of GAS interactions with beta-lactam antibiotics are not fully understood. In this study, we performed a genome-wide mutagenesis screen to identify GAS mutations conferring altered susceptibility to beta-lactam antibiotics. In the aggregate, we discovered that mutations in 150 GAS genes were associated with altered beta-lactam susceptibility. Many identified genes were previously not known to alter beta-lactam susceptibility or affect cell wall biosynthesis. Our results provide new information about the molecular mechanisms of GAS interaction with beta-lactam antibiotics.


Asunto(s)
Ceftriaxona , Streptococcus pneumoniae , Humanos , Proteínas de Unión a las Penicilinas/genética , Streptococcus pneumoniae/genética , Penicilina G , beta-Lactamas/farmacología , Monobactamas , Mutagénesis , Antibacterianos/farmacología , Resistencia betalactámica/genética , Pruebas de Sensibilidad Microbiana
2.
Am J Pathol ; 192(4): 642-652, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35123975

RESUMEN

Genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to dramatically alter the landscape of the coronavirus disease 2019 (COVID-19) pandemic. The recently described variant of concern designated Omicron (B.1.1.529) has rapidly spread worldwide and is now responsible for the majority of COVID-19 cases in many countries. Because Omicron was recognized recently, many knowledge gaps exist about its epidemiology, clinical severity, and disease course. A genome sequencing study of SARS-CoV-2 in the Houston Methodist health care system identified 4468 symptomatic patients with infections caused by Omicron from late November 2021 through January 5, 2022. Omicron rapidly increased in only 3 weeks to cause 90% of all new COVID-19 cases, and at the end of the study period caused 98% of new cases. Compared with patients infected with either Alpha or Delta variants in our health care system, Omicron patients were significantly younger, had significantly increased vaccine breakthrough rates, and were significantly less likely to be hospitalized. Omicron patients required less intense respiratory support and had a shorter length of hospital stay, consistent with on average decreased disease severity. Two patients with Omicron stealth sublineage BA.2 also were identified. The data document the unusually rapid spread and increased occurrence of COVID-19 caused by the Omicron variant in metropolitan Houston, Texas, and address the lack of information about disease character among US patients.


Asunto(s)
COVID-19 , Vacunas , COVID-19/epidemiología , Hospitalización , Humanos , SARS-CoV-2/genética , Texas/epidemiología
3.
Am J Pathol ; 192(2): 320-331, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34774517

RESUMEN

Genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have repeatedly altered the course of the coronavirus disease 2019 (COVID-19) pandemic. Delta variants are now the focus of intense international attention because they are causing widespread COVID-19 globally and are associated with vaccine breakthrough cases. We sequenced 16,965 SARS-CoV-2 genomes from samples acquired March 15, 2021, through September 20, 2021, in the Houston Methodist hospital system. This sample represents 91% of all Methodist system COVID-19 patients during the study period. Delta variants increased rapidly from late April onward to cause 99.9% of all COVID-19 cases and spread throughout the Houston metroplex. Compared with all other variants combined, Delta caused a significantly higher rate of vaccine breakthrough cases (23.7% for Delta compared with 6.6% for all other variants combined). Importantly, significantly fewer fully vaccinated individuals required hospitalization. Vaccine breakthrough cases caused by Delta had a low median PCR cycle threshold value (a proxy for high virus load). This value was similar to the median cycle threshold value for unvaccinated patients with COVID-19 caused by Delta variants, suggesting that fully vaccinated individuals can transmit SARS-CoV-2 to others. Patients infected with Alpha and Delta variants had several significant differences. The integrated analysis indicates that vaccines used in the United States are highly effective in decreasing severe COVID-19, hospitalizations, and deaths.


Asunto(s)
COVID-19/virología , SARS-CoV-2 , Adulto , Vacunas contra la COVID-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Texas
4.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747604

RESUMEN

Streptococcus agalactiae (group B streptococcus, or GBS) is a common cause of bacteremia and sepsis in newborns, pregnant women, and immunocompromised patients. The molecular mechanisms used by GBS to survive and proliferate in blood are not well understood. Here, using a highly virulent GBS strain and transposon-directed insertion site sequencing (TraDIS), we performed genome-wide screens to discover novel GBS genes required for bacterial survival in human whole blood and plasma. The screen identified 85 and 41 genes that are required for GBS growth in whole blood and plasma, respectively. A common set of 29 genes was required in both whole blood and plasma. Targeted gene deletion confirmed that (i) genes encoding methionine transporter (metP) and manganese transporter (mtsA) are crucial for GBS survival in whole blood and plasma, (ii) gene W903_1820, encoding a small multidrug export family protein, contributes significantly to GBS survival in whole blood, (iii) the shikimate pathway gene aroA is essential for GBS growth in whole blood and plasma, and (iv) deletion of srr1, encoding a fibrinogen-binding adhesin, increases GBS survival in whole blood. Our findings provide new insight into the GBS-host interactions in human blood.


Asunto(s)
Bacteriemia/microbiología , Genes Bacterianos , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/genética , Proteínas Bacterianas/genética , Aptitud Genética , Genoma Bacteriano/genética , Humanos , Viabilidad Microbiana/genética , Mutagénesis Insercional , Mutación , Streptococcus agalactiae/crecimiento & desarrollo , Streptococcus agalactiae/patogenicidad , Virulencia/genética
5.
J Clin Microbiol ; 58(7)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32295894

RESUMEN

Candida auris is a pathogen of considerable public health importance. It was first reported in 2009. Five clades, determined by genomic analysis and named by the distinct regions where they were initially identified, have been defined. We previously completed a draft genome sequence of an African clade (clade III) strain cultured from the urine of a patient hospitalized in the greater Houston metropolitan region (strain LOM). Although initially uncommon, reports of the African clade in the United States have grown to include a recent cluster in California. Here, we describe a second human C. auris infection in the Houston area. Whole-genome sequence analysis demonstrated the Houston patient isolates to be clonally related to one another but distantly related to other African clade organisms recovered in the United States or elsewhere. Infections in these patients were present on admission to the hospital and occurred several months apart. Taken together, the data demonstrate the emergence and persistence of a clonal C. auris population and highlights the importance of routine high-resolution genomic surveillance of emerging human pathogens in the clinical laboratory.


Asunto(s)
Candida , Candidiasis , Antifúngicos , Candida/genética , Candidiasis Invasiva , Genómica , Humanos
6.
Am J Pathol ; 190(4): 862-873, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32200972

RESUMEN

Group A streptococcus (GAS) is a major pathogen that impacts health and economic affairs worldwide. Although the oropharynx is the primary site of infection, GAS can colonize the female genital tract and cause severe diseases, such as puerperal sepsis, neonatal infections, and necrotizing myometritis. Our understanding of how GAS genes contribute to interaction with the primate female genital tract is limited by the lack of relevant animal models. Using two genome-wide transposon mutagenesis screens, we identified 69 GAS genes required for colonization of the primate vaginal mucosa in vivo and 96 genes required for infection of the uterine wall ex vivo. We discovered a common set of 39 genes important for GAS fitness in both environments. They include genes encoding transporters, surface proteins, transcriptional regulators, and metabolic pathways. Notably, the genes that encode the surface-exclusion protein (SpyAD) and the immunogenic secreted protein 2 (Isp2) were found to be crucial for GAS fitness in the female primate genital tract. Targeted gene deletion confirmed that isogenic mutant strains ΔspyAD and Δisp2 are significantly impaired in ability to colonize the primate genital tract and cause uterine wall pathologic findings. Our studies identified novel GAS genes that contribute to female reproductive tract interaction that warrant translational research investigation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidad , Enfermedades Vaginales/microbiología , Animales , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Femenino , Regulación Bacteriana de la Expresión Génica , Macaca fascicularis , Proteínas de la Membrana/genética , Infecciones Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Enfermedades Vaginales/patología , Virulencia
7.
mBio ; 11(1)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071274

RESUMEN

A fundamental goal of contemporary biomedical research is to understand the molecular basis of disease pathogenesis and exploit this information to develop targeted and more-effective therapies. Necrotizing myositis caused by the bacterial pathogen Streptococcus pyogenes is a devastating human infection with a high mortality rate and few successful therapeutic options. We used dual transcriptome sequencing (RNA-seq) to analyze the transcriptomes of S. pyogenes and host skeletal muscle recovered contemporaneously from infected nonhuman primates. The in vivo bacterial transcriptome was strikingly remodeled compared to organisms grown in vitro, with significant upregulation of genes contributing to virulence and altered regulation of metabolic genes. The transcriptome of muscle tissue from infected nonhuman primates (NHPs) differed significantly from that of mock-infected animals, due in part to substantial changes in genes contributing to inflammation and host defense processes. We discovered significant positive correlations between group A streptococcus (GAS) virulence factor transcripts and genes involved in the host immune response and inflammation. We also discovered significant correlations between the magnitude of bacterial virulence gene expression in vivo and pathogen fitness, as assessed by previously conducted genome-wide transposon-directed insertion site sequencing (TraDIS). By integrating the bacterial RNA-seq data with the fitness data generated by TraDIS, we discovered five new pathogen genes, namely, S. pyogenes 0281 (Spy0281 [dahA]), ihk-irr, slr, isp, and ciaH, that contribute to necrotizing myositis and confirmed these findings using isogenic deletion-mutant strains. Taken together, our study results provide rich new information about the molecular events occurring in severe invasive infection of primate skeletal muscle that has extensive translational research implications.IMPORTANCE Necrotizing myositis caused by Streptococcus pyogenes has high morbidity and mortality rates and relatively few successful therapeutic options. In addition, there is no licensed human S. pyogenes vaccine. To gain enhanced understanding of the molecular basis of this infection, we employed a multidimensional analysis strategy that included dual RNA-seq and other data derived from experimental infection of nonhuman primates. The data were used to target five streptococcal genes for pathogenesis research, resulting in the unambiguous demonstration that these genes contribute to pathogen-host molecular interactions in necrotizing infections. We exploited fitness data derived from a recently conducted genome-wide transposon mutagenesis study to discover significant correlation between the magnitude of bacterial virulence gene expression in vivo and pathogen fitness. Collectively, our findings have significant implications for translational research, potentially including vaccine efforts.


Asunto(s)
Fascitis Necrotizante/microbiología , Miositis/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Transcriptoma , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Músculo Esquelético/microbiología , Músculo Esquelético/patología , Miositis/genética , Miositis/metabolismo , Primates , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Streptococcus pyogenes/patogenicidad , Virulencia/genética , Factores de Virulencia/metabolismo
8.
Microb Drug Resist ; 26(7): 717-721, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32031908

RESUMEN

Staphylococcus pseudintermedius is commonly associated with colonization or infection in dogs, and was identified as a novel species within the genus Staphylococcus in 2006. Methicillin resistance emerged in S. pseudintermedius during the last decade. We describe here a genomic characterization of the first methicillin-resistant S. pseudintermedius (MRSP) recovered from a human patient in Argentina. The strain was phenotypically identified as MRSP 8510 by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and antimicrobial susceptibility testing. We assessed genetic characterization by mecA PCR, SCCmec (staphylococcal chromosomal cassette) typing, and whole-genome sequencing. MRSP 8510 was phenotypically resistant to six classes of antimicrobial agents, consistent with the genes found in its genome. We concluded that MRSP 8510 was a multidrug-resistant ST1412 isolate. This study highlights the importance of the detection and characterization of pathogens with potential risks of zoonotic transmission to humans, as they may constitute a reservoir of genes associated with antimicrobial resistance.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Resistencia a la Meticilina , Staphylococcus/aislamiento & purificación , Anciano de 80 o más Años , Argentina , Femenino , Humanos , Tipificación de Secuencias Multilocus , Secuenciación Completa del Genoma
9.
Am J Pathol ; 189(10): 2002-2018, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31369755

RESUMEN

Two-component systems (TCSs) are signal transduction proteins that enable bacteria to respond to external stimuli by altering the global transcriptome. Accessory proteins interact with TCSs to fine-tune their activity. In group A Streptococcus (GAS), regulator of Cov (RocA) is an accessory protein that functions with the control of virulence regulator/sensor TCS, which regulates approximately 15% of the GAS transcriptome. Whole-genome sequencing analysis of serotype M28 GAS strains collected from invasive infections in humans identified a higher number of missense (amino acid-altering) and nonsense (protein-truncating) polymorphisms in rocA than expected. We hypothesized that polymorphisms in RocA alter the global transcriptome and virulence of serotype M28 GAS. We used naturally occurring clinical isolates with rocA polymorphisms (n = 48), an isogenic rocA deletion mutant strain, and five isogenic rocA polymorphism mutant strains to perform genome-wide transcript analysis (RNA sequencing), in vitro virulence factor assays, and mouse and nonhuman primate pathogenesis studies to test this hypothesis. Results demonstrated that polymorphisms in rocA result in either a subtle transcriptome change, causing a wild-type-like virulence phenotype, or a substantial transcriptome change, leading to a significantly increased virulence phenotype. Each polymorphism had a unique effect on the global GAS transcriptome. Taken together, our data show that naturally occurring polymorphisms in one gene encoding an accessory protein can significantly alter the global transcriptome and virulence phenotype of GAS, an important human pathogen.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Miositis/patología , Polimorfismo de Nucleótido Simple , Infecciones Estreptocócicas/patología , Streptococcus pyogenes/patogenicidad , Transactivadores/genética , Animales , Proteínas Bacterianas/metabolismo , Ratones , Miositis/epidemiología , Miositis/microbiología , Infecciones Estreptocócicas/complicaciones , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Transcriptoma , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
10.
Microbiol Resour Announc ; 8(25)2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31221653

RESUMEN

Candida auris is an emerging pathogen of considerable public health importance. We present the draft genome sequence of a strain recently cultured from the urine of a patient hospitalized in the greater Houston metropolitan region. Two combined Oxford Nanopore sequencing runs provided sufficient data to rapidly generate a draft genome.

11.
J Med Microbiol ; 66(12): 1765-1773, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29099690

RESUMEN

PURPOSE: Strains of type emm89 Streptococcus pyogenes have recently increased in frequency as a cause of human infections in several countries in Europe and North America. This increase has been molecular epidemiologically linked with the emergence of a new genetically distinct clone, designated clade 3. We sought to extend our understanding of this epidemic behavior by the genetic characterization of type emm89 strains responsible in recent years for an increased frequency of infections in Scotland. METHODOLOGY: We sequenced the genomes of a retrospective cohort of 122 emm89 strains recovered from patients with invasive and noninvasive infections throughout Scotland during 2010 to 2016. RESULTS: All but one of the 122 emm89 infection isolates are of the recently emerged epidemic clade 3 clonal lineage. The Scotland isolates are closely related to and not genetically distinct from recent emm89 strains from England, they constitute a single genetic population. CONCLUSIONS: The clade 3 clone causes virtually all-contemporary emm89 infections in Scotland. These findings add Scotland to a growing list of countries of Europe and North America where, by whole genome sequencing, emm89 clade 3 strains have been demonstrated to be the cause of an ongoing epidemic of invasive infections and to be genetically related due to descent from a recent common progenitor.


Asunto(s)
Proteínas Bacterianas/genética , Genoma Bacteriano , Infecciones Estreptocócicas/epidemiología , Streptococcus pyogenes/genética , ADN Bacteriano/genética , Humanos , Epidemiología Molecular , Estudios Retrospectivos , Escocia/epidemiología , Análisis de Secuencia de ADN , Streptococcus pyogenes/clasificación , Streptococcus pyogenes/aislamiento & purificación
12.
Genome Announc ; 5(42)2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29051239

RESUMEN

In a study of 1,777 Klebsiella strains, we discovered KPN1705, which was distinct from all recognized Klebsiella spp. We closed the genome of strain KPN1705 using a hybrid of Illumina short-read and Oxford Nanopore long-read technologies. For this novel species, we propose the name Klebsiella quasivariicola sp. nov.

13.
mSphere ; 2(4)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28776045

RESUMEN

Klebsiella pneumoniae is a major threat to public health, causing significant morbidity and mortality worldwide. The emergence of highly drug-resistant strains is particularly concerning. There has been a recognition and division of Klebsiella pneumoniae into three distinct phylogenetic groups: Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. K. variicola and K. quasipneumoniae have often been described as opportunistic pathogens that have less virulence in humans than K. pneumoniae does. We recently sequenced the genomes of 1,777 extended-spectrum-beta-lactamase (ESBL)-producing K. pneumoniae isolates recovered from human infections and discovered that 28 strains were phylogenetically related to K. variicola and K. quasipneumoniae. Whole-genome sequencing of 95 additional non-ESBL-producing K. pneumoniae isolates recovered from patients found 12 K. quasipneumoniae strains. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis initially identified all patient isolates as K. pneumoniae, suggesting a potential pitfall in conventional clinical microbiology laboratory identification methods. Whole-genome sequence analysis revealed extensive sharing of core gene content and plasmid replicons among the Klebsiella species. For the first time, strains of both K. variicola and K. quasipneumoniae were found to carry the Klebsiella pneumoniae carbapenemase (KPC) gene, while another K. variicola strain was found to carry the New Delhi metallo-beta-lactamase 1 (NDM-1) gene. K. variicola and K. quasipneumoniae infections were not less virulent than K. pneumoniae infections, as assessed by in-hospital mortality and infection type. We also discovered evidence of homologous recombination in one K. variicola strain, as well as one strain from a novel Klebsiella species, which challenge the current understanding of interrelationships between clades of Klebsiella. IMPORTANCEKlebsiella pneumoniae is a serious human pathogen associated with resistance to multiple antibiotics and high mortality. K. variicola and K. quasipneumoniae are closely related organisms that are generally considered to be less-virulent opportunistic pathogens. We used a large, comprehensive, population-based strain collection and whole-genome sequencing to investigate infections caused by these organisms in our hospital system. We discovered that K. variicola and K. quasipneumoniae isolates are often misidentified as K. pneumoniae by routine clinical microbiology diagnostics and frequently cause severe life-threatening infections similar to K. pneumoniae. The presence of KPC in K. variicola and K. quasipneumoniae strains as well as NDM-1 metallo-beta-lactamase in one K. variicola strain is particularly concerning because these genes confer resistance to many different beta-lactam antibiotics. The sharing of plasmids, as well as evidence of homologous recombination, between these three species of Klebsiella is cause for additional concern.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...