Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO J ; 38(15): e100990, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368601

RESUMEN

Activation of the ATF6α signaling pathway is initiated by trafficking of ATF6α from the ER to the Golgi apparatus. Its subsequent proteolysis releases a transcription factor that translocates to the nucleus causing downstream gene activation. How ER retention, Golgi trafficking, and proteolysis of ATF6α are regulated and whether additional protein partners are required for its localization and processing remain unresolved. Here, we show that ER-resident oxidoreductase ERp18 associates with ATF6α following ER stress and plays a key role in both trafficking and activation of ATF6α. We find that ERp18 depletion attenuates the ATF6α stress response. Paradoxically, ER stress accelerates trafficking of ATF6α to the Golgi in ERp18-depleted cells. However, the translocated ATF6α becomes aberrantly processed preventing release of the soluble transcription factor. Hence, we demonstrate that ERp18 monitors ATF6α ER quality control to ensure optimal processing following trafficking to the Golgi.


Asunto(s)
Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Activación Transcripcional , Línea Celular , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Eliminación de Gen , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Transducción de Señal , Respuesta de Proteína Desplegada
2.
EMBO J ; 36(5): 693-702, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28093500

RESUMEN

Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so-called non-native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non-native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non-native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non-native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway.


Asunto(s)
Disulfuros/metabolismo , Retículo Endoplásmico/enzimología , Tiorredoxina Reductasa 1/metabolismo , Línea Celular , Humanos , NADP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...