Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884507

RESUMEN

Streptococcus pneumoniae is an important causative organism of respiratory tract infections. Although periodontal bacteria have been shown to influence respiratory infections such as aspiration pneumonia, the synergistic effect of S. pneumoniae and Porphyromonas gingivalis, a periodontopathic bacterium, on pneumococcal infections is unclear. To investigate whether P. gingivalis accelerates pneumococcal infections, we tested the effects of inoculating P. gingivalis culture supernatant (PgSup) into S. pneumoniae-infected mice. Mice were intratracheally injected with S. pneumoniae and PgSup to induce pneumonia, and lung histopathological sections and the absolute number and frequency of neutrophils and macrophages in the lung were analyzed. Proinflammatory cytokine/chemokine expression was examined by qPCR and ELISA. Inflammatory cell infiltration was observed in S. pneumoniae-infected mice and S. pnemoniae and PgSup mixed-infected mice, and mixed-infected mice showed more pronounced inflammation in lung. The ratios of monocytes/macrophages and neutrophils were not significantly different between the lungs of S. pneumoniae-infected mice and those of mixed-infected mice. PgSup synergistically increased TNF-α expression/production and IL-17 production compared with S. pneumoniae infection alone. We demonstrated that PgSup enhanced inflammation in pneumonia caused by S. pneumoniae, suggesting that virulence factors produced by P. gingivalis are involved in the exacerbation of respiratory tract infections such as aspiration pneumonia.


Asunto(s)
Infecciones por Bacteroidaceae/complicaciones , Inflamación/patología , Pulmón/patología , Infiltración Neutrófila/inmunología , Neumonía Neumocócica/patología , Porphyromonas gingivalis/fisiología , Streptococcus pneumoniae/fisiología , Animales , Infecciones por Bacteroidaceae/microbiología , Quimiocinas/metabolismo , Citocinas/metabolismo , Inflamación/etiología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Ratones , Ratones Endogámicos C57BL , Neumonía Neumocócica/epidemiología , Neumonía Neumocócica/metabolismo , Neumonía Neumocócica/microbiología
2.
J Clin Med ; 9(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33322059

RESUMEN

Porphyromonas gingivalis Mfa1 fimbriae are thought to act as adhesion factors and to direct periodontal tissue destruction but their immunomodulatory actions are poorly understood. Here, we investigated the effect of Mfa1 stimulation on the immune and metabolic mechanisms of gingival fibroblasts from periodontal connective tissue. We also determined the role of Toll-like receptor (TLR) 2 and TLR4 in Mfa1 recognition. Mfa1 increased the expression of genes encoding chemokine (C-X-C motif) ligand (CXCL) 1, CXCL3, intercellular adhesion molecule (ICAM) 1 and Selectin endothelium (E) in gingival fibroblasts, but did not have a significant effect on genes that regulate metabolism. Mfa1-stimulated up-regulation of genes was significantly suppressed in Tlr4 siRNA-transfected cells compared with that in control siRNA-transfected cells, which indicates that recognition by TLR4 is essential for immunomodulation by Mfa1. Additionally, suppression of Tlr2 expression partially attenuated the stimulatory effect of Mfa1. Overall, these results help explain the involvement of P. gingivalis Mfa1 fimbriae in the progression of periodontal disease.

3.
Int J Mol Sci ; 21(6)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197293

RESUMEN

Interleukin (IL)-35 is an immunosuppressive cytokine mainly produced by regulatory T cells. IL-35 mediates immunological functions by suppressing the inflammatory immune response. However, the role of IL-35 in bone-destructive diseases remains unclear, especially in terms of osteoclastogenesis. Therefore, the current study investigated the synergistic effect of IL-35 on osteoclastogenesis that is involved the pathogeneses of periodontitis and rheumatoid arthritis. Osteoclastic differentiation and osteoclastogenesis of RAW264 (RAW) cells induced by receptor activator of nuclear factor (NF)-κB ligand (RANKL) and IL-35 were evaluated by tartrate-resistant acid phosphate staining, hydroxyapatite resorption assays, and quantitative polymerase chain reaction. The effect of IL-35 on RANKL-stimulated signaling pathways was assessed by Western blot analysis. Costimulation of RAW cells by RANKL and IL-35 induced osteoclastogenesis significantly compared with stimulation by RANKL alone. Phosphorylations of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase tended to be increased by RANKL and IL-35 compared with RANKL or IL-35 alone. Additionally, the osteoclastogenesis induced by RANKL and IL-35 was suppressed by inhibition of ERK. In this study, IL-35 and RANKL induced osteoclastogenesis synergistically. Previous reports have shown that IL-35 suppresses the differentiation of osteoclasts. Therefore, IL-35 might play dual roles of destruction and protection in osteoclastogenesis.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Interleucinas/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Monocitos/metabolismo , Osteoclastos/metabolismo , Ligando RANK/farmacología , Animales , Interleucinas/agonistas , Ratones , Monocitos/citología , Osteoclastos/citología , Ligando RANK/agonistas , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA