Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Forensic Toxicol ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519777

RESUMEN

PURPOSE: The presence of cereulide, an emetic toxin produced by Bacillus cereus, in fried rice samples is critical evidence of food poisoning even in situations where B. cereus could not be detected. This study aims to develop a screening method for analyzing cereulide in fried rice using the QuEChERS procedure and liquid chromatography-tandem mass spectrometry (LC-MS/MS). METHODS: Cereulide was identified and quantified in fried rice samples using the QuEChERS extraction method and LC-MS/MS. The accuracies of the methods were determined by analyzing fortified blank samples at two concentrations (10 and 50 µg/kg) conducted on three samples daily for five days. RESULTS: The QuEChERS procedure removed matrix compounds from fried rice. Characteristic MS/MS spectra enabled the identification of cereulide. As the matrix effects in seven fried rice samples were within ± 6%, an external solvent calibration curve could be used for quantification. This method exhibited good accuracy ranging from 88 to 89%. The relative standard deviations for both repeatability and intra-laboratory reproducibility were < 4%. These standard deviations satisfied the criteria of the Japanese validation guidelines for residues (MHLW 2010, Director Notice, Syoku-An No. 1224-1). The limit of quantification was 2 µg/kg. The applicability of this method was confirmed using the analysis of cereulide in fried rice samples incubated with emetic Bacillus cereus. CONCLUSIONS: The QuEChERS extraction procedure described herein showed substantial promise as a reliable screening tool for cereulide in fried rice sample.

2.
Chem Res Toxicol ; 33(9): 2467-2474, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32786394

RESUMEN

Selenium (Se) is an essential trace element in animals; however, the element can become highly toxic in excess amounts beyond the nutritional level. Although Se is mainly excreted into urine as a selenosugar within the nutritional level, excess amounts of Se are transformed as an alternative urinary metabolite, trimethylselenonium ion (TMSe). Se methylation appears to be an important metabolic process for the detoxification of excess Se; however, the biochemical mechanisms underlying the Se methylation have not been elucidated. In this study, we evaluated biochemical characteristics of two human methyltransferases for Se methylation, thiopurine S-methyltransferase (TPMT) and indolethylamine N-methyltransferase (INMT). The first methylation of Se, i.e., a nonmethylated to a monomethylated form, was specifically driven by TPMT, and INMT specifically mediated the third methylation, i.e., dimethylated to trimethylated form. The second methylation, i.e., a monomethylated to dimethylated form, was driven by either TPMT or INMT. Exogenous expression of TPMT, but not INMT, ameliorated the cytotoxicity of inorganic nonmethylated selenium salt, suggesting that only TPMT gave the cellular resistance against selenite exposure. TPMT was ubiquitously expressed in most mouse tissues and preferably expressed in the liver and kidneys, while INMT was specifically expressed in the lung and supplementally expressed in the liver and kidneys. Our results revealed that both TPMT and INMT cooperatively contributed to the TMSe production, enabling urinary excretion of Se and maintenance of homeostasis of this essential yet highly toxic trace element. Thus, TPMT and INMT can be recognized as selenium methyltransferases as a synonym.


Asunto(s)
Metiltransferasas/metabolismo , Compuestos de Selenio/metabolismo , Células Cultivadas , Cromatografía Liquida , Células HEK293 , Humanos , Compuestos de Selenio/química , Compuestos de Selenio/orina , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA