Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stem Cells ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975693

RESUMEN

Muscle regeneration depends on muscle stem cell (MuSC) activity. Myogenic regulatory factors, including myoblast determination protein 1 (MyoD), regulate the fate transition of MuSCs. However, the direct target of MYOD in the process is not completely clear. Using previously established MyoD knock-in (MyoD-KI) mice, we revealed that MyoD targets dual-specificity phosphatase (Dusp) 13 and Dusp27. In Dusp13:Dusp27 double knock-out (DKO) mice, the ability for muscle regeneration after injury was reduced. Moreover, single-cell RNA sequencing of MyoD-high expressing MuSCs from MyoD-KI mice revealed that Dusp13 and Dusp27 are expressed only in specific populations within MyoD-high MuSCs, which also express Myogenin. Overexpressing Dusp13 in MuSCs causes premature muscle differentiation. Thus, we propose a model where DUSP13 and DUSP27 contribute to the fate transition of MuSCs from proliferation to differentiation during myogenesis.

2.
Commun Biol ; 6(1): 424, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085700

RESUMEN

Skeletal muscle is sensitive to gravitational alterations. We recently developed a multiple artificial-gravity research system (MARS), which can generate gravity ranging from microgravity to Earth gravity (1 g) in space. Using the MARS, we studied the effects of three different gravitational levels (microgravity, lunar gravity [1/6 g], and 1 g) on the skeletal muscle mass and myofiber constitution in mice. All mice survived and returned to Earth, and skeletal muscle was collected two days after landing. We observed that microgravity-induced soleus muscle atrophy was prevented by lunar gravity. However, lunar gravity failed to prevent the slow-to-fast myofiber transition in the soleus muscle in space. These results suggest that lunar gravity is enough to maintain proteostasis, but a greater gravitational force is required to prevent the myofiber type transition. Our study proposes that different gravitational thresholds may be required for skeletal muscle adaptation.


Asunto(s)
Atrofia Muscular , Ingravidez , Ratones , Animales , Atrofia Muscular/prevención & control , Músculo Esquelético/fisiología , Ingravidez/efectos adversos , Luna
4.
Cell Rep ; 42(4): 112289, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36952339

RESUMEN

Myofibers are broadly characterized as fatigue-resistant slow-twitch (type I) fibers and rapidly fatiguing fast-twitch (type IIa/IIx/IIb) fibers. However, the molecular regulation of myofiber type is not entirely understood; particularly, information on regulators of fast-twitch muscle is scarce. Here, we demonstrate that the large Maf transcription factor family dictates fast type IIb myofiber specification in mice. Remarkably, the ablation of three large Mafs leads to the drastic loss of type IIb myofibers, resulting in enhanced endurance capacity and the reduction of muscle force. Conversely, the overexpression of each large Maf in the type I soleus muscle induces type IIb myofibers. Mechanistically, a large Maf directly binds to the Maf recognition element on the promoter of myosin heavy chain 4, which encodes the type IIb myosin heavy chain, driving its expression. This work identifies the large Maf transcription factor family as a major regulator for fast type IIb muscle determination.


Asunto(s)
Fibras Musculares de Contracción Rápida , Cadenas Pesadas de Miosina , Ratones , Animales , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Músculo Esquelético/metabolismo , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Proteínas Proto-Oncogénicas c-maf/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...