Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 10(2)2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30966242

RESUMEN

Long poly-diacetylene chains are excellent candidates for planar, on-surface synthesized molecular electronic wires. Since hexagonal-Boron Nitride (h-BN) was identified as the best available atomically flat insulator for the deposition of poly-diacetylene precursors, we demonstrate the polymerization patterns and rate on it under UV-light irradiation, with subsequent polymer identification by atomic force microscopy. The results on h-BN indicate self-sensitization which yields blocks comprised of several polymers, unlike on the well-studied graphite/diacetylene system, where the polymers are always isolated. In addition, the photo-polymerization proceeds at least 170 times faster on h-BN, where it also results in longer polymers. Both effects are explained by the h-BN bandgap, which is larger than the diacetylene electronic excitation energy, thus allowing the transfer of excess energy absorbed by polymerized wires to adjacent monomers, triggering their polymerization. This work sets the stage for conductance measurements of single molecular poly-diacetylene wires on h-BN.

2.
Nanotechnology ; 28(3): 035703, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-27934780

RESUMEN

Localization of atomic defect-induced electronic transport through a single graphene layer is calculated using a full-valence electronic structure description as a function of the defect density and taking into account the atomic-scale deformations of the layer. The elementary electronic destructive interferences leading to Anderson localization are analyzed. The low-voltage current intensity decreases with increasing length and defect density, with a calculated localization length ζ = 3.5 nm for a defect density of 5%. The difference from the experimental defect density of 0.5% required for an oxide surface-supported graphene to obtain the same ζ is discussed, pointing out how interactions of the graphene supporting surface and surface chemical modifications also control electronic transport localization.

3.
Phys Chem Chem Phys ; 18(46): 31600-31605, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27834980

RESUMEN

Single crystal sapphire and diamond surfaces are used as planar, atomically flat insulating surfaces, for the deposition of the diacetylene compound 10,12-nonacosadiynoic acid. The surface assembly is compared with results on hexagonal boron nitride (h-BN), highly oriented pyrolytic graphite (HOPG) and MoS2 surfaces. A perfectly flat-lying monolayer of 10,12-nonacosadiynoic acid self-assembles on h-BN like on HOPG and MoS2. On sapphire and oxidized diamond surfaces, we observed assemblies of standing-up molecular layers. Surface assembly is driven by surface electrostatic dipoles. Surface polarity is partially controlled using a hydrogenated diamond surface or totally screened by the deposition of a graphene layer on the sapphire surface. This results in a perfectly flat and organized SAM on graphene, which is ready for on-surface polymerization of long and isolated molecular wires under ambient conditions.

4.
Nanotechnology ; 27(39): 395303, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27573286

RESUMEN

The electrical characterization of single-polymer chains on a surface is an important step towards novel molecular device development. The main challenge is the lack of appropriate atomically flat insulating substrates for fabricating single-polymer chains. Here, using atomic force microscopy, we demonstrate that the (0001) surface of an insulating hexagonal boron nitride (h-BN) substrate leads to a flat-lying self-assembled monolayer of diacetylene compounds. The subsequent heating or ultraviolet irradiation can initiate an on-surface polymerization process leading to the formation of long polydiacetylene chains. The frequency of photo-polymerization occurrence on h-BN(0001) is two orders of magnitude higher than that on graphite(0001). This is explained by the enhanced lifetime of the molecular excited state, because relaxation via the h-BN is suppressed due to a large band gap. We also demonstrate that on-surface polymerization on h-BN(0001) is possible even after the lithography process, which opens up the possibility of further electrical investigations.

5.
ACS Nano ; 8(12): 12259-64, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25469761

RESUMEN

Bottom-up creation of huge molecular complexes by covalently interconnecting functional molecules and conductive polymers is a key technology for constructing nanoscale electronic circuits. In this study, we have created an array of molecule-polymer nanojunctions from C60 molecules and polydiacetylene (PDA) nanowires at designated positions on solid surfaces by controlling self-assemblies and intermolecular chemical reactions of molecular ingredients predeposited onto the surfaces. In the proposed method, the construction of each nanojunction spontaneously proceeds via two types of chemical reactions: a chain polymerization among self-assembled diacetylene compound molecules for creating a single PDA nanowire and a subsequent cycloaddition reaction between the propagating forefront part of the PDA backbone and a single C60 molecule adsorbed on the surface. Scanning tunneling microscopy has proved that the C60 molecule is covalently connected to each end of the π-conjugated PDA backbone. Furthermore, the decrease in the energy gap of the C60 molecule in nanojunctions is observed as compared with that of pristine C60 molecules, which is considered to be due to the covalent interaction between the PDA edge and the C60 molecule.

6.
Langmuir ; 29(24): 7334-43, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23594344

RESUMEN

Ordered arrays of metal nanoparticles are important for nanoelectronic and nanophotonic applications. Here, we report the formation of self-assembled arrays of gold nanoparticles on molecular layers of diacetylene compounds on a MoS2(0001) substrate. The arrangement of gold nanoparticles is observed using scanning tunneling microscopy. When gold is deposited on a self-assembled monolayer of 10,12-nonacosadiynoic acid or 10,12-octadecadiynoic acid on a MoS2(0001) substrate, the ordered array of diacetylene moieties in the molecular layer serves as a template for the formation of ordered arrays of gold nanoparticles. In contrast, when gold is deposited on a pristine MoS2(0001) surface or on a molecular layer of stearic acid, the gold nanoparticles are randomly distributed on the surface. It is found that the arrangement of gold nanoparticles is largely determined by the deposition rate; faster deposition results in more ordered arrays of gold nanoparticles. Our observations confirm the role of unsaturated π systems in molecules acting as a template for the regular arrangement of gold nanoparticles; this work will open up new possibilities for interfacial nanoarchitectonics.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Microscopía de Túnel de Rastreo
7.
Nanoscale ; 4(10): 3013-28, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22517409

RESUMEN

Single functional molecules offer great potential for the development of novel nanoelectronic devices with capabilities beyond today's silicon-based devices. To realise single-molecule electronics, the development of a viable method for connecting functional molecules to each other using single conductive polymer chains is required. The method of initiating chain polymerisation using the tip of a scanning tunnelling microscope (STM) is very useful for fabricating single conductive polymer chains at designated positions and thereby wiring single molecules. In this feature article, developments in the controlled chain polymerisation of diacetylene compounds and the properties of polydiacetylene chains are summarised. Recent studies of "chemical soldering", a technique enabling the covalent connection of single polydiacetylene chains to single functional molecules, are also introduced. This represents a key step in advancing the development of single-molecule electronics.

8.
J Am Chem Soc ; 133(21): 8227-33, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21548552

RESUMEN

Key to single-molecule electronics is connecting functional molecules to each other using conductive nanowires. This involves two issues: how to create conductive nanowires at designated positions, and how to ensure chemical bonding between the nanowires and functional molecules. Here, we present a novel method that solves both issues. Relevant functional molecules are placed on a self-assembled monolayer of diacetylene compound. A probe tip of a scanning tunneling microscope is then positioned on the molecular row of the diacetylene compound to which the functional molecule is adsorbed, and a conductive polydiacetylene nanowire is fabricated by initiating chain polymerization by stimulation with the tip. Since the front edge of chain polymerization necessarily has a reactive chemical species, the created polymer nanowire forms chemical bonding with an encountered molecular element. We name this spontaneous reaction "chemical soldering". First-principles theoretical calculations are used to investigate the structures and electronic properties of the connection. We demonstrate that two conductive polymer nanowires are connected to a single phthalocyanine molecule. A resonant tunneling diode formed by this method is discussed.

9.
ACS Nano ; 5(4): 2779-86, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21401050

RESUMEN

Spontaneous chain polymerization of molecules initiated by a scanning tunneling microscope tip is studied with a focus on its rate-determining factors. Such chain polymerization that happens in self-assembled monolayers (SAM) of diacetylene compound molecules, which results in a π-conjugated linear polydiacetylene nanowire, varies in its rate P depending on domains in the SAM and substrate materials. While the arrangement of diacetylene molecules is identical in every domain on a graphite substrate, it varies in different domains on a MoS(2) substrate. This structural variation enables us to investigate how P is affected by molecular geometry. An important determining factor of P is the distance between two carbon atoms which are to be bound by polymerization reaction, R; as R decreases by 0.1 nm, P increases ∼2 times. P for a MoS(2) substrate is ∼4 times higher (with the same value of R) than that for a graphite substrate because of higher mobility of molecules. The exciting correlation of the chain polymerization rate to the geometrical structure of the diacetylene molecules brings a deeper understanding of the mechanism of chain polymerization kinetics. In addition, the fabrication of one-dimensional conjugated polymer nanowires on a semiconducting MoS(2) substrate as demonstrated here may be of immense importance in the realization of future molecular devices.

10.
Soft Matter ; 4(5): 1041-1047, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32907137

RESUMEN

The structure of a single polydiacetylene compound on a graphite substrate was investigated using atomic force microscopy (AFM). The linear conjugated polydiacetylenes were obtained through chain polymerization of a monomolecular layer of diacetylene compound on a graphite substrate under ultraviolet light irradiation. AFM observations revealed that the polydiacetylenes were imaged higher than the unpolymerized monomer rows. This result supports the 'lifted-up' conformation model, in which the polydiacetylene backbone is geometrically raised. To investigate why the polymer backbone is lifted, we also carried out first-principles density-functional calculations in the local density approximation. These calculations suggested that the steric hindrance between the alkyl side-chains of the monomers and the oligomer caused the lifted-up conformation.

11.
Langmuir ; 23(10): 5247-50, 2007 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-17432888

RESUMEN

Chain polymerizations of diacetylene compound multilayer films on graphite substrates were examined with a scanning tunneling microscope (STM) at the liquid/solid interface of the phenyloctane solution. The first layer grew very quickly into many small domains. This was followed by the slow formation of the piled up layers into much larger domains. Chain polymerization on the topmost surface layer could be initiated by applying a pulsed voltage between the STM tip and the substrate, usually producing a long polymer of submicrometer length. In contrast, polymerizations on the underlying layer were never observed. This can be explained by a conformation model in which the polymer backbone is lifted up.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...