Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38927964

RESUMEN

The PI3K/AKT/mTOR signalling pathway is one of the most frequently activated pathways in breast cancer and also plays a central role in the regulation of several physiologic functions. There are major efforts ongoing to exploit precision medicine by developing inhibitors that target the three kinases (PI3K, AKT, and mTOR). Although multiple compounds have been developed, at present, there are just three inhibitors approved to target this pathway in patients with advanced ER-positive, HER2-negative breast cancer: everolimus (mTOR inhibitor), alpelisib (PIK3CA inhibitor), and capivasertib (AKT inhibitor). Like most targeted cancer drugs, resistance poses a major problem in the clinical setting and is a factor that has frequently limited the overall efficacy of these agents. Drug resistance can be categorised into intrinsic or acquired resistance depending on the timeframe it has developed within. Whereas intrinsic resistance exists prior to a specific treatment, acquired resistance is induced by a therapy. The majority of patients with ER-positive, HER2-negative advanced breast cancer will likely be offered an inhibitor of the PI3K/AKT/mTOR pathway at some point in their cancer journey, with the options available depending on the approval criteria in place and the cancer's mutation status. Within this large cohort of patients, it is likely that most will develop resistance at some point, which makes this an area of interest and an unmet need at present. Herein, we review the common mechanisms of resistance to agents that target the PI3K/AKT/mTOR signalling pathway, elaborate on current management approaches, and discuss ongoing clinical trials attempting to mitigate this significant issue. We highlight the need for additional studies into AKT1 inhibitor resistance in particular.

2.
Cancers (Basel) ; 16(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38201451

RESUMEN

Despite recent advances, HER2-positive advanced breast cancer (ABC) remains a largely incurable disease, with resistance to conventional anti-HER2 drugs ultimately unavoidable for all but a small minority of patients who achieve an enduring remission and possibly cure. Over the past two decades, significant advances in our understanding of the underlying molecular mechanisms of HER2-driven oncogenesis have translated into pharmaceutical advances, with the developing of increasingly sophisticated therapies directed against HER2. These include novel, more potent selective HER2 tyrosine kinase inhibitors (TKIs); new anti-HER2 antibody-drug conjugates; and dual epitope targeting antibodies, with more advanced pharmacological properties and higher affinity. With the introduction of adjuvant T-DM1 for incomplete responders to neoadjuvant therapy, fewer patients are relapsing, but for those who do relapse, disease that may be resistant to standard first- and second-line therapies requires new approaches. Furthermore, the risk of CNS relapse has not been abrogated by current (neo)adjuvant strategies; therefore, current research efforts are being directed towards this challenging site of metastatic disease. In this article, we review the currently available clinical data informing the effective management of HER2-positive breast cancer beyond standard first-line therapy with pertuzumab, trastuzumab, and taxanes, and the management of relapse in patients who have already been exposed to both these agents and T-DM1 for early breast cancer (EBC). We additionally discuss novel anti-HER2 targeted agents and combinations in clinical trials, which may be integrated into standard treatment paradigms in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...