RESUMEN
The investigation of inherited disorders of erythropoiesis has elucidated many of the principles underlying the production of normal red blood cells and how this is perturbed in human disease. Congenital Dyserythropoietic Anaemia type 1 (CDA-I) is a rare form of anaemia caused by mutations in two genes of unknown function: CDAN1 and CDIN1 (previously called C15orf41), whilst in some cases, the underlying genetic abnormality is completely unknown. Consequently, the pathways affected in CDA-I remain to be discovered. To enable detailed analysis of this rare disorder we have validated a culture system which recapitulates all of the cardinal haematological features of CDA-I, including the formation of the pathognomonic 'spongy' heterochromatin seen by electron microscopy. Using a variety of cell and molecular biological approaches we discovered that erythroid cells in this condition show a delay during terminal erythroid differentiation, associated with increased proliferation and widespread changes in chromatin accessibility. We also show that the proteins encoded by CDAN1 and CDIN1 are enriched in nucleoli which are structurally and functionally abnormal in CDA-I. Together these findings provide important pointers to the pathways affected in CDA-I which for the first time can now be pursued in the tractable culture system utilised here.
Asunto(s)
Anemia Diseritropoyética Congénita , Anemia Diseritropoyética Congénita/diagnóstico , Anemia Diseritropoyética Congénita/genética , Células Eritroides , Eritropoyesis , Glicoproteínas/genética , Humanos , Proteínas Nucleares/genéticaRESUMEN
Accurate diagnosis of rare inherited anaemias is challenging, requiring a series of complex and expensive laboratory tests. Targeted next-generation-sequencing (NGS) has been used to investigate these disorders, but the selection of genes on individual panels has been narrow and the validation strategies used have fallen short of the standards required for clinical use. Clinical-grade validation of negative results requires the test to distinguish between lack of adequate sequencing reads at the locations of known mutations and a real absence of mutations. To achieve a clinically-reliable diagnostic test and minimize false-negative results we developed an open-source tool (CoverMi) to accurately determine base-coverage and the 'discoverability' of known mutations for every sample. We validated our 33-gene panel using Sanger sequencing and microarray. Our panel demonstrated 100% specificity and 99·7% sensitivity. We then analysed 57 clinical samples: molecular diagnoses were made in 22/57 (38·6%), corresponding to 32 mutations of which 16 were new. In all cases, accurate molecular diagnosis had a positive impact on clinical management. Using a validated NGS-based platform for routine molecular diagnosis of previously undiagnosed congenital anaemias is feasible in a clinical diagnostic setting, improves precise diagnosis and enhances management and counselling of the patient and their family.
Asunto(s)
Anemia/diagnóstico , Anemia/genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Biología Computacional/métodos , Manejo de la Enfermedad , Estudios de Asociación Genética , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Mutación , Polimorfismo de Nucleótido Simple , Enfermedades Raras , Reproducibilidad de los Resultados , Flujo de TrabajoRESUMEN
In 1934, Epstein and Goedel used the term hemorrhagic thrombocythemia to describe a disorder characterized by permanent elevation of a platelet count to more than three times normal, hyperplasia of megakaryocytes, and the tendency for venous thrombosis and spontaneous hemorrhage. Over the last 75 years, and particularly in the past 6 years, major progress has been made in our understanding of essential thrombocythemia (ET) and its pathogenesis with the identification of the highly prevalent JAK-2 V617F and other mutations. Current management of this condition is based upon historical data and with treatments that have not changed significantly for nearly two decades. This study discusses this and recent progress, highlighting exciting new data with old and new drugs, as well as which patients in particular should be evaluated for these new therapies.