Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(14): 2449-2463.e13, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37402367

RESUMEN

Transcription factors (TFs) orchestrate the gene expression programs that define each cell's identity. The canonical TF accomplishes this with two domains, one that binds specific DNA sequences and the other that binds protein coactivators or corepressors. We find that at least half of TFs also bind RNA, doing so through a previously unrecognized domain with sequence and functional features analogous to the arginine-rich motif of the HIV transcriptional activator Tat. RNA binding contributes to TF function by promoting the dynamic association between DNA, RNA, and TF on chromatin. TF-RNA interactions are a conserved feature important for vertebrate development and disrupted in disease. We propose that the ability to bind DNA, RNA, and protein is a general property of many TFs and is fundamental to their gene regulatory function.


Asunto(s)
ARN , Factores de Transcripción , Factores de Transcripción/metabolismo , ARN/metabolismo , Sitios de Unión , Unión Proteica , ADN/genética
2.
Dev Cell ; 57(14): 1776-1788.e8, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35809564

RESUMEN

A multitude of cellular processes involve biomolecular condensates, which has led to the suggestion that diverse pathogenic mutations may dysregulate condensates. Although proof-of-concept studies have identified specific mutations that cause condensate dysregulation, the full scope of the pathological genetic variation that affects condensates is not yet known. Here, we comprehensively map pathogenic mutations to condensate-promoting protein features in putative condensate-forming proteins and find over 36,000 pathogenic mutations that plausibly contribute to condensate dysregulation in over 1,200 Mendelian diseases and 550 cancers. This resource captures mutations presently known to dysregulate condensates, and experimental tests confirm that additional pathological mutations do indeed affect condensate properties in cells. These findings suggest that condensate dysregulation may be a pervasive pathogenic mechanism underlying a broad spectrum of human diseases, provide a strategy to identify proteins and mutations involved in pathologically altered condensates, and serve as a foundation for mechanistic insights into disease and therapeutic hypotheses.


Asunto(s)
Proteínas , Humanos , Mutación/genética
3.
Cell ; 184(1): 207-225.e24, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33333019

RESUMEN

Regulation of biological processes typically incorporates mechanisms that initiate and terminate the process and, where understood, these mechanisms often involve feedback control. Regulation of transcription is a fundamental cellular process where the mechanisms involved in initiation have been studied extensively, but those involved in arresting the process are poorly understood. Modeling of the potential roles of RNA in transcriptional control suggested a non-equilibrium feedback control mechanism where low levels of RNA promote condensates formed by electrostatic interactions whereas relatively high levels promote dissolution of these condensates. Evidence from in vitro and in vivo experiments support a model where RNAs produced during early steps in transcription initiation stimulate condensate formation, whereas the burst of RNAs produced during elongation stimulate condensate dissolution. We propose that transcriptional regulation incorporates a feedback mechanism whereby transcribed RNAs initially stimulate but then ultimately arrest the process.


Asunto(s)
Retroalimentación Fisiológica , ARN/genética , Transcripción Genética , Animales , Complejo Mediador/metabolismo , Ratones , Modelos Biológicos , Células Madre Embrionarias de Ratones/metabolismo , ARN/biosíntesis , Electricidad Estática
4.
Nature ; 586(7829): 440-444, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32698189

RESUMEN

Methyl CpG binding protein 2 (MeCP2) is a key component of constitutive heterochromatin, which is crucial for chromosome maintenance and transcriptional silencing1-3. Mutations in the MECP2 gene cause the progressive neurodevelopmental disorder Rett syndrome3-5, which is associated with severe mental disability and autism-like symptoms that affect girls during early childhood. Although previously thought to be a dense and relatively static structure1,2, heterochromatin is now understood to exhibit properties consistent with a liquid-like condensate6,7. Here we show that MeCP2 is a dynamic component of heterochromatin condensates in cells, and is stimulated by DNA to form liquid-like condensates. MeCP2 contains several domains that contribute to the formation of condensates, and mutations in MECP2 that lead to Rett syndrome disrupt the ability of MeCP2 to form condensates. Condensates formed by MeCP2 selectively incorporate and concentrate heterochromatin cofactors rather than components of euchromatic transcriptionally active condensates. We propose that MeCP2 enhances the separation of heterochromatin and euchromatin through its condensate partitioning properties, and that disruption of condensates may be a common consequence of mutations in MeCP2 that cause Rett syndrome.


Asunto(s)
Heterocromatina/metabolismo , Discapacidad Intelectual/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Mutación , Inmunidad Adaptativa , Animales , Femenino , Inmunidad Innata , Discapacidad Intelectual/patología , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Síndrome de Rett/genética
5.
Science ; 368(6497): 1386-1392, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32554597

RESUMEN

The nucleus contains diverse phase-separated condensates that compartmentalize and concentrate biomolecules with distinct physicochemical properties. Here, we investigated whether condensates concentrate small-molecule cancer therapeutics such that their pharmacodynamic properties are altered. We found that antineoplastic drugs become concentrated in specific protein condensates in vitro and that this occurs through physicochemical properties independent of the drug target. This behavior was also observed in tumor cells, where drug partitioning influenced drug activity. Altering the properties of the condensate was found to affect the concentration and activity of drugs. These results suggest that selective partitioning and concentration of small molecules within condensates contributes to drug pharmacodynamics and that further understanding of this phenomenon may facilitate advances in disease therapy.


Asunto(s)
Antineoplásicos/farmacología , Núcleo Celular/metabolismo , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Cell ; 179(4): 953-963.e11, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675501

RESUMEN

Chromatin domains and their associated structures must be faithfully inherited through cellular division to maintain cellular identity. However, accessing the localized strategies preserving chromatin domain inheritance, specifically the transfer of parental, pre-existing nucleosomes with their associated post-translational modifications (PTMs) during DNA replication, is challenging in living cells. We devised an inducible, proximity-dependent labeling system to irreversibly mark replication-dependent H3.1 and H3.2 histone-containing nucleosomes at desired loci in mouse embryonic stem cells so that their fate after DNA replication could be followed. Strikingly, repressed chromatin domains are preserved through local re-deposition of parental nucleosomes. In contrast, nucleosomes decorating active chromatin domains do not exhibit such preservation. Notably, altering cell fate leads to an adjustment of the positional inheritance of parental nucleosomes that reflects the corresponding changes in chromatin structure. These findings point to important mechanisms that contribute to parental nucleosome segregation to preserve cellular identity.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , Epigénesis Genética , Nucleosomas/genética , Animales , Diferenciación Celular/genética , División Celular/genética , Linaje de la Célula/genética , Replicación del ADN/genética , Histonas/genética , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional/genética
7.
Sci Adv ; 5(10): eaay3068, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31616795

RESUMEN

FACT (facilitates chromatin transcription) is a protein complex that allows RNA polymerase II (RNAPII) to overcome the nucleosome-induced barrier to transcription. While abundant in undifferentiated cells and many cancers, FACT is not abundant or is absent in most tissues. Therefore, we screened for additional proteins that might replace FACT upon differentiation. We identified two proteins, lens epithelium-derived growth factor (LEDGF) and hepatoma-derived growth factor 2 (HDGF2), each containing two high mobility group A (HMGA)-like AT-hooks and a methyl-lysine reading Pro-Trp-Trp-Pro (PWWP) domain that binds to H3K36me2 and H3K36me3.LEDGF and HDGF2 colocalize with H3K36me2/3 at genomic regions containing active genes. In myoblasts, LEDGF and HDGF2 are enriched on most active genes. Upon differentiation to myotubes, LEDGF levels decrease, while HDGF2 levels are maintained. Moreover, HDGF2 is required for their proper expression. HDGF2 knockout myoblasts exhibit an accumulation of paused RNAPII within the transcribed region of many HDGF2 target genes, indicating a defect in early elongation.


Asunto(s)
Diferenciación Celular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Nucleosomas/metabolismo , Transcripción Genética , Animales , Regulación de la Expresión Génica , Células HeLa , Humanos , Ratones , Unión Proteica , Células Madre/metabolismo
8.
Mol Cell ; 76(5): 753-766.e6, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31563432

RESUMEN

The gene expression programs that define the identity of each cell are controlled by master transcription factors (TFs) that bind cell-type-specific enhancers, as well as signaling factors, which bring extracellular stimuli to these enhancers. Recent studies have revealed that master TFs form phase-separated condensates with the Mediator coactivator at super-enhancers. Here, we present evidence that signaling factors for the WNT, TGF-ß, and JAK/STAT pathways use their intrinsically disordered regions (IDRs) to enter and concentrate in Mediator condensates at super-enhancers. We show that the WNT coactivator ß-catenin interacts both with components of condensates and DNA-binding factors to selectively occupy super-enhancer-associated genes. We propose that the cell-type specificity of the response to signaling is mediated in part by the IDRs of the signaling factors, which cause these factors to partition into condensates established by the master TFs and Mediator at genes with prominent roles in cell identity.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Complejo Mediador/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica/fisiología , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Complejo Mediador/fisiología , Factores de Transcripción STAT/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Proteína smad3/metabolismo , Proteínas de la Superfamilia TGF-beta/metabolismo , Transcripción Genética , Vía de Señalización Wnt , beta Catenina/metabolismo
9.
J Vis Exp ; (150)2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31498316

RESUMEN

The organization and structure of chromatin domains are unique to individual cell lineages. Their misregulation might lead to a loss in cellular identity and/or disease. Despite tremendous efforts, our understanding of the formation and propagation of chromatin domains is still limited. Chromatin domains have been studied under steady-state conditions, which are not conducive to following the initial events during their establishment. Here, we present a method to inducibly reconstruct chromatin domains and follow their re-formation as a function of time. Although, first applied to the case of PRC2-mediated repressive chromatin domain formation, it could be easily adapted to other chromatin domains. The modification of and/or the combination of this method with genomics and imaging technologies will provide invaluable tools to study the establishment of chromatin domains in great detail. We believe that this method will revolutionize our understanding of how chromatin domains form and interact with each other.


Asunto(s)
Cromatina , Dominios Proteicos , Animales , Células Madre Embrionarias , Genómica , Humanos , Ratones Endogámicos C57BL
10.
Genes Dev ; 33(15-16): 903-935, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31123062

RESUMEN

As the process that silences gene expression ensues during development, the stage is set for the activity of Polycomb-repressive complex 2 (PRC2) to maintain these repressed gene profiles. PRC2 catalyzes a specific histone posttranslational modification (hPTM) that fosters chromatin compaction. PRC2 also facilitates the inheritance of this hPTM through its self-contained "write and read" activities, key to preserving cellular identity during cell division. As these changes in gene expression occur without changes in DNA sequence and are inherited, the process is epigenetic in scope. Mutants of mammalian PRC2 or of its histone substrate contribute to the cancer process and other diseases, and research into these aberrant pathways is yielding viable candidates for therapeutic targeting. The effectiveness of PRC2 hinges on its being recruited to the proper chromatin sites; however, resolving the determinants to this process in the mammalian case was not straightforward and thus piqued the interest of many in the field. Here, we chronicle the latest advances toward exposing mammalian PRC2 and its high maintenance.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Animales , Cromatina/metabolismo , Humanos , Mutación , Neoplasias/genética , Neoplasias/fisiopatología , Transporte de Proteínas , Investigación/tendencias
11.
Sci Adv ; 4(10): eaau5935, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30402543

RESUMEN

A methionine substitution at lysine-27 on histone H3 variants (H3K27M) characterizes ~80% of diffuse intrinsic pontine gliomas (DIPG) and inhibits polycomb repressive complex 2 (PRC2) in a dominant-negative fashion. Yet, the mechanisms for this inhibition and abnormal epigenomic landscape have not been resolved. Using quantitative proteomics, we discovered that robust PRC2 inhibition requires levels of H3K27M greatly exceeding those of PRC2, seen in DIPG. While PRC2 inhibition requires interaction with H3K27M, we found that this interaction on chromatin is transient, with PRC2 largely being released from H3K27M. Unexpectedly, inhibition persisted even after PRC2 dissociated from H3K27M-containing chromatin, suggesting a lasting impact on PRC2. Furthermore, allosterically activated PRC2 is particularly sensitive to H3K27M, leading to the failure to spread H3K27me from PRC2 recruitment sites and consequently abrogating PRC2's ability to establish H3K27me2-3 repressive chromatin domains. In turn, levels of polycomb antagonists such as H3K36me2 are elevated, suggesting a more global, downstream effect on the epigenome. Together, these findings reveal the conditions required for H3K27M-mediated PRC2 inhibition and reconcile seemingly paradoxical effects of H3K27M on PRC2 recruitment and activity.


Asunto(s)
Neoplasias del Tronco Encefálico/patología , Cromatina/química , Glioma/patología , Histonas/metabolismo , Lisina/metabolismo , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Animales , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/metabolismo , Células Cultivadas , Niño , Cromatina/genética , Cromatina/metabolismo , Modelos Animales de Enfermedad , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Glioma/genética , Glioma/metabolismo , Humanos , Ratones , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
12.
Mol Cell ; 70(6): 1149-1162.e5, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29932905

RESUMEN

Polycomb repressive complex 2 (PRC2) maintains gene silencing by catalyzing methylation of histone H3 at lysine 27 (H3K27me2/3) within chromatin. By designing a system whereby PRC2-mediated repressive domains were collapsed and then reconstructed in an inducible fashion in vivo, a two-step mechanism of H3K27me2/3 domain formation became evident. First, PRC2 is stably recruited by the actions of JARID2 and MTF2 to a limited number of spatially interacting "nucleation sites," creating H3K27me3-forming Polycomb foci within the nucleus. Second, PRC2 is allosterically activated via its binding to H3K27me3 and rapidly spreads H3K27me2/3 both in cis and in far-cis via long-range contacts. As PRC2 proceeds further from the nucleation sites, its stability on chromatin decreases such that domains of H3K27me3 remain proximal, and those of H3K27me2 distal, to the nucleation sites. This study demonstrates the principles of de novo establishment of PRC2-mediated repressive domains across the genome.


Asunto(s)
Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Animales , Cromatina/metabolismo , Silenciador del Gen , Código de Histonas , Histonas/metabolismo , Lisina/metabolismo , Metilación , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones , Unión Proteica , Procesamiento Proteico-Postraduccional
13.
Methods Mol Biol ; 1487: 289-301, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27924576

RESUMEN

Chromatin immunoprecipitation (ChIP) is a technique used to determine the association of proteins or histone modifications with chromatin regions in living cells or tissues, and is used extensively in the chromatin biology field to study transcriptional and epigenetic mechanisms. Increasing evidence points to an epigenetic coordination of signaling cascades, such as ERK, that regulate key processes in development and disease, revealing novel principles of gene regulation. Here we describe a detailed protocol for performing chromatin immunoprecipitation followed by qPCR (ChIP-qPCR) for probing histone modifications regulated by ERK signaling in mouse ESCs.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Transducción de Señal , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Código de Histonas , Histonas/metabolismo , Ratones
14.
Cancer Cell ; 26(5): 668-681, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25453903

RESUMEN

The aberrant transcription factor EWS-FLI1 drives Ewing sarcoma, but its molecular function is not completely understood. We find that EWS-FLI1 reprograms gene regulatory circuits in Ewing sarcoma by directly inducing or repressing enhancers. At GGAA repeat elements, which lack evolutionary conservation and regulatory potential in other cell types, EWS-FLI1 multimers induce chromatin opening and create de novo enhancers that physically interact with target promoters. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors. These divergent chromatin-remodeling patterns repress tumor suppressors and mesenchymal lineage regulators while activating oncogenes and potential therapeutic targets, such as the kinase VRK1. Our findings demonstrate how EWS-FLI1 establishes an oncogenic regulatory program governing both tumor survival and differentiation.


Asunto(s)
Neoplasias Óseas/genética , Ensamble y Desensamble de Cromatina , Proteínas de Fusión Oncogénica/fisiología , Proteína Proto-Oncogénica c-fli-1/fisiología , Proteína EWS de Unión a ARN/fisiología , Sarcoma de Ewing/genética , Animales , Secuencia de Bases , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Unión Proteica , Sarcoma de Ewing/metabolismo
15.
Cell ; 156(4): 678-90, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24529373

RESUMEN

Erk1/2 activation contributes to mouse ES cell pluripotency. We found a direct role of Erk1/2 in modulating chromatin features required for regulated developmental gene expression. Erk2 binds to specific DNA sequence motifs typically accessed by Jarid2 and PRC2. Negating Erk1/2 activation leads to increased nucleosome occupancy and decreased occupancy of PRC2 and poised RNAPII at Erk2-PRC2-targeted developmental genes. Surprisingly, Erk2-PRC2-targeted genes are specifically devoid of TFIIH, known to phosphorylate RNA polymerase II (RNAPII) at serine-5, giving rise to its initiated form. Erk2 interacts with and phosphorylates RNAPII at its serine 5 residue, which is consistent with the presence of poised RNAPII as a function of Erk1/2 activation. These findings underscore a key role for Erk1/2 activation in promoting the primed status of developmental genes in mouse ES cells and suggest that the transcription complex at developmental genes is different than the complexes formed at other genes, offering alternative pathways of regulation.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIH/metabolismo , Animales , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Activación Enzimática , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Nucleosomas/metabolismo , Fosforilación , Complejo Represivo Polycomb 2/metabolismo
16.
Cell Rep ; 3(5): 1567-79, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23707066

RESUMEN

Glioblastoma (GBM) is thought to be driven by a subpopulation of cancer stem cells (CSCs) that self-renew and recapitulate tumor heterogeneity yet remain poorly understood. Here, we present a comparative analysis of chromatin state in GBM CSCs that reveals widespread activation of genes normally held in check by Polycomb repressors. These activated targets include a large set of developmental transcription factors (TFs) whose coordinated activation is unique to the CSCs. We demonstrate that a critical factor in the set, ASCL1, activates Wnt signaling by repressing the negative regulator DKK1. We show that ASCL1 is essential for the maintenance and in vivo tumorigenicity of GBM CSCs. Genome-wide binding profiles for ASCL1 and the Wnt effector LEF-1 provide mechanistic insight and suggest widespread interactions between the TF module and the signaling pathway. Our findings demonstrate regulatory connections among ASCL1, Wnt signaling, and collaborating TFs that are essential for the maintenance and tumorigenicity of GBM CSCs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Wnt/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cromatina/metabolismo , Epigenómica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Células Madre Neoplásicas/citología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Células Tumorales Cultivadas , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...