RESUMEN
High-mobility group box 1 (HMGB1) is a multifunctional protein. Upon injury or infection, HMGB1 is passively released from necrotic and activated dendritic cells and macrophages, where it functions as a cytokine, acting as a ligand for RAGE, a major receptor of innate immunity stimulating inflammation responses including the pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Blocking the HMGB1/RAGE axis offers a therapeutic approach to treating these inflammatory conditions. Here, we describe a synthetic antibody (SA), a copolymer nanoparticle (NP) that binds HMGB1. A lightly cross-linked N-isopropylacrylamide (NIPAm) hydrogel copolymer with nanomolar affinity for HMGB1 was selected from a small library containing trisulfated 3,4,6S-GlcNAc and hydrophobic N-tert-butylacrylamide (TBAm) monomers. Competition binding experiments with heparin established that the dominant interaction between SA and HMGB1 occurs at the heparin-binding domain. In vitro studies established that anti-HMGB1-SA inhibits HMGB1-dependent ICAM-1 expression and ERK phosphorylation of HUVECs, confirming that SA binding to HMGB1 inhibits the proteins' interaction with the RAGE receptor. Using temporary middle cerebral artery occlusion (t-MCAO) model rats, anti-HMGB1-SA was found to accumulate in the ischemic brain by crossing the blood-brain barrier. Significantly, administration of anti-HMGB1-SA to t-MCAO rats dramatically reduced brain damage caused by cerebral ischemia/reperfusion. These results establish that a statistical copolymer, selected from a small library of candidates synthesized using an "informed" selection of functional monomers, can yield a functional synthetic antibody. The knowledge gained from these experiments can facilitate the discovery, design, and development of a new category of drug.
Asunto(s)
Isquemia Encefálica , Proteína HMGB1 , Daño por Reperfusión , Ratas , Animales , Proteína HMGB1/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Inflamación/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Heparina/metabolismoRESUMEN
For the fluorometric determination of picolinic acid in human serum, HPLC-postcolumn UV irradiation using zinc acetate has been developed. Picolinic acid in serum sample was separated on a Capcell Pak C18. The mobile phase consisted of 0.1 mol/L sodium phosphate solution (adjusted to pH 3.0) containing 3.0 mmol/L zinc acetate and 3.5 mmol/L trimethylamine, and delivered at a flow rate of 0.8 mL/minutes. In order to stabilize the retention time (6.5 minutes), a back pressure tube (0.4 m × 0.13 mm i.d.) was attached after the photoreaction tube. Column effluent was irradiated with ultraviolet light to produce fluorescence, excitation wavelength of 336 nm and emission wavelength of 448 nm. The calibration graph for picolinic acid showed linearity when the amount was in the range of 0.89 to 455 pmol, and the detection limit (S/N = 3) was determined to be 0.30 pmol. The pretreatment of serum sample consisted of deproteinized by perchloric acid, potassium hydroxide, and mobile phase. The mean recovery of picolinic acid from serum was 99.0%. Using this procedure, the concentration of picolinic acid in serum of a healthy subject was determined.
RESUMEN
The loss of the phosphatase and tensin homolog (PTEN) deleted from chromosome 10 is frequently observed in a variety of human cancers and appears to be an ideal target in synthetic lethality-based treatment. In this study, the synthetic lethal interaction between PTEN loss and the gene silencing of poly [ADP-ribose] polymerase 1 (PARP1) was examined in human triple-negative breast cancer cells (PTEN-null MDA-MB-468 and PTEN-positive MDA-MB-231 cells). Polycation liposomes previously developed by us were employed to deliver the small interfering ribonucleic acid (siRNA) targeted toward PARP1 (siPARP1) into the cancer cells. The silencing of the PARP1 gene exerted a cytocidal effect on the MDA-MB-468 cells but had no effect on the MDA-MB-231 cells and the human umbilical vein endothelial cells employed as normal cells. The simultaneous knockdown of PARP1 and PTEN in the MDA-MB-231 cells resulted in the significant inhibition of cell growth. The data suggest that the effects of the PARP1 knockdown on the cells were dependent on the PTEN status. A significant increase in the DNA breaks and the extent of apoptosis, possibly due to the failure of DNA repair, was observed upon PARP1 knockdown in the MDA-MB-468 cells compared with the case in the MDA-MB-231 cells. Our findings suggest that the synthetic lethal approach via PARP1 gene silencing holds promise for the treatment of patients with PTEN-null breast cancer.
Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Células Endoteliales/metabolismo , Reparación del ADN , Silenciador del Gen , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genéticaRESUMEN
Temperature-responsive polymers are often characterized by an abrupt change in the degree of swelling brought about by small changes in temperature. Polymers with a lower critical solution temperature (LCST) in particular, are important as drug and gene delivery vehicles. Drug molecules are taken up by the polymer in their solvent swollen state below their LCST. Increasing the temperature above the LCST, typically physiological temperatures, results in desolvation of polymer chains and microstructure collapse. The trapped drug is released slowly by passive diffusion through the collapsed polymer network. Since diffusion is dependent on many variables, localizing and control of the drug delivery rate can be challenging. Here, we report a fundamentally different approach for the rapid (seconds) tumor-specific delivery of a biomacromolecular drug. A copolymer nanoparticle (NP) was engineered with affinity for melittin, a peptide with potent anti-cancer activity, at physiological temperature. Intravenous injection of the NP-melittin complex results in its accumulation in organs and at the tumor. We demonstrate that by local cooling of the tumor the melittin is rapidly released from the NP-melittin complex. The release occurs only at the cooled tumor site. Importantly, tumor growth was significantly suppressed using this technique demonstrating therapeutically useful quantities of the drug can be delivered. This work reports the first example of an in vivo site-specific release of a macromolecular drug by local cooling for cancer therapy. In view of the increasing number of cryotherapeutic devices for in vivo applications, this work has the potential to stimulate cryotherapy for in vivo drug delivery.
Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Animales , Ratones , Polímeros/química , Meliteno , Sistemas de Liberación de Medicamentos , Antineoplásicos/uso terapéutico , Temperatura , Nanopartículas/química , Neoplasias/tratamiento farmacológicoRESUMEN
Homeostasis can be achieved by adding a protein supplement; however, an appropriate vector is required to deliver the protein into the cell because of the low stability of proteins in the blood and low cell membrane permeability. Here we report an easy one-step method of encapsulating proteins into liposomes for delivery. We used negatively charged superoxide dismutase (SOD) and a polycation liposome as protein and liposome models, respectively. Liposome-encapsulated SOD was prepared by freeze-thawing the SOD-liposome complex (lipoplexes). The amount of immobilized SOD within the lipoplex significantly increased on freeze-thawing. Surprisingly, subjecting the single-layered lipoplexes to freeze-thawing produced multilayered liposomes with SOD localized between the lipid layers. The amount of SOD delivered intracellularly significantly increased by freeze-thawing compared with that delivered by lipoplexes without freeze-thawing. SOD, liposomes, and endosomes were separately localized in the cells. The freeze-thawed lipoplex-encapsulated SOD samples were intravenously injected in mice. The SOD biodistribution was dramatically changed compared with the injection of free SOD or lipoplex. SOD was detached from the lipoplex in the bloodstream after the injection of non-freeze-thawed lipoplex, whereas the encapsulation of SOD in the liposomes upon freeze-thawing enabled the stable circulation of SOD with the liposomes in the bloodstream. This work paves the way for the application of the freeze-thawing technology for the easy one-step encapsulation of proteins into liposomes for protein delivery.
Asunto(s)
Liposomas , Superóxido Dismutasa , Animales , Congelación , Lípidos , Ratones , Distribución TisularRESUMEN
PURPOSE: This study aims to understand the process and mechanism of oral drug absorption from liposomes and to verify the usefulness of liposomal formulation for poorly soluble drugs. METHODS: Cyclosporine A (CsA) was used as a model drug and entrapped into Dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC) liposomes. Molecular state of CsA in the liposomes was analyzed using powder X-ray diffraction (PXRD) and polarized light microscopy (PLM). Release profiles of CsA from liposomes were observed in fasted state simulated intestinal fluid (FaSSIF). Oral absorption of CsA from liposomal formulations were investigated in rats. RESULTS: PXRD and PLM analyses suggested that CsA exists in the lipid layer of liposomes as a molecular dispersed state. Although both liposomes retained CsA stably in the simple buffer, DPPC liposomes quickly released CsA within 10 min in FaSSIF due to the interaction with bile acid. In contrast, effect of bile acid was negligible in DSPC, indicating a high resistivity to membrane perturbation. Oral bioavailability of CsA from liposomal formulations were almost comparable with that from a marketed product (Neoral). However, the absorption profiles were clearly different. CsA was absorbed quickly from DPPC liposomes and Neoral, while sustained absorption profile was observed from DSPC liposomes. Further study in which ritonavir was co-entrapped in the liposomes with CsA showed the higher efficacy of ritonavir to increase oral bioavailability of CsA. CONCLUSION: Liposomes allows the appropriate formulation design for oral delivery of poorly soluble drugs, not only to increase the extent but also to control the rate of absorption.
Asunto(s)
Ciclosporina , Liposomas , Administración Oral , Animales , Ácidos y Sales Biliares , Ratas , RitonavirRESUMEN
Ischemic stroke is still one of the leading causes of high mortality and severe disability worldwide. Therapeutic options for ischemic stroke and subsequent cerebral ischemia/reperfusion injury remain limited due to challenges associated with drug permeability through the blood-brain barrier (BBB). Neuroprotectant delivery with nanoparticles, including liposomes, offers a promising solution to address this problem, as BBB disruption following ischemic stroke allows nanoparticles to pass through the intercellular gaps between endothelial cells. To ameliorate ischemic brain damage, a number of nanotherapeutics encapsulating neuroprotective agents, as well as surface-modified nanoparticles with specific ligands targeting the injured brain regions, have been developed. Combination therapy with nanoparticles encapsulating neuroprotectants and tissue plasminogen activator (t-PA), a globally approved thrombolytic agent, has been demonstrated to extend the narrow therapeutic time window of t-PA. In addition, the design of biomimetic drug delivery systems (DDS) employing circulating cells (e.g., leukocytes, platelets) with unique properties has recently been investigated to overcome the injured BBB, utilizing these cells' inherent capability to penetrate the ischemic brain. Herein, we review recent findings on the application and utility of nanoparticle DDS, particularly liposomes, and various approaches to developing biomimetic DDS functionalized with cellular membranes/membrane proteins for the treatment of ischemic stroke.
RESUMEN
Sepsis is a life-threatening condition caused by the extreme release of inflammatory mediators into the blood in response to infection (e.g., bacterial infection, COVID-19), resulting in the dysfunction of multiple organs. Currently, there is no direct treatment for sepsis. Here we report an abiotic hydrogel nanoparticle (HNP) as a potential therapeutic agent for late-stage sepsis. The HNP captures and neutralizes all variants of histones, a major inflammatory mediator released during sepsis. The highly optimized HNP has high capacity and long-term circulation capability for the selective sequestration and neutralization of histones. Intravenous injection of the HNP protects mice against a lethal dose of histones through the inhibition of platelet aggregation and migration into the lungs. In vivo administration in murine sepsis model mice results in near complete survival. These results establish the potential for synthetic, nonbiological polymer hydrogel sequestrants as a new intervention strategy for sepsis therapy and adds to our understanding of the importance of histones to this condition.
Asunto(s)
Hidrogeles/uso terapéutico , Nanopartículas/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Plaquetas/efectos de los fármacos , Adhesión Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Histonas/antagonistas & inhibidores , Histonas/metabolismo , Histonas/toxicidad , Hidrogeles/química , Hidrogeles/metabolismo , Hidrogeles/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Ratones , Nanopartículas/química , Nanopartículas/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Polietilenglicoles/química , Polietilenglicoles/metabolismo , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Unión Proteica , Sepsis/mortalidad , Tasa de SupervivenciaRESUMEN
Multifunctional synthetic polymers can bind to target molecules and are therefore widely investigated in diagnostics, drug delivery carriers, and separation carriers. Because these polymers are synthesized from nonbiological components, purification processes (e.g., chromatography, dialysis, extraction, and centrifugation) must be conducted after the synthesis. Although several purification methods are used for polymer purification, few reports have revealed the influence of purification process on the functions of polymer. In this study, we demonstrated that the characteristics, function, and stability of synthetic polymer depend on the purification process. N-Isopropylacrylamide-based polymer nanoparticles (NPs) and melittin (i.e., honey bee venom) were used as a model of synthetic polymer and target toxic peptide, respectively. Synthesized NPs were purified by dialysis in methanol, acetone precipitation, or centrifugation. NPs purified by dialysis in ultrapure water were used as control NPs. Then, NP size, surface charge, toxin neutralization effect, and stability were determined. NP size did not considerably change by purification with centrifugation; however, it decreased by purification using dialysis in methanol and acetone precipitation compared with that of control NPs. The ζ-potential of NPs changed after each purification process compared with that of control NPs. The melittin neutralization efficiency of NPs depended on the purification process; i.e., it decreased by acetone precipitation and increased by dialysis in methanol and centrifugation compared with that of control NPs. Of note, the addition of methanol and acetone decreased NP stability. These studies implied the importance of considering the effect of the purification method on synthetic polymer function.
Asunto(s)
Nanopartículas/química , Polímeros/aislamiento & purificación , Estructura Molecular , Polímeros/síntesis química , Polímeros/químicaRESUMEN
Macromolecular toxins often induce inflammatory cytokine production, multiple-organ dysfunction, and cell death. Synthetic polymer ligands (PLs) prepared with several functional monomers have the potential of neutralizing target toxins after binding to them; therefore, they are of significant interest as abiotic antidotes. Although PLs show little toxin neutralization effect in the bloodstream because of immediate elimination from there, the toxin neutralization effect is significantly improved by the direct decoration of PLs onto lipid nanoparticles (PL-LNPs). However, this direct decoration decreases PL mobility, induces LNP aggregation after capturing the target, and decreases LNP blood circulation time. We designed novel PL-LNPs to improve PL mobility, inhibit the aggregation tendency after capturing the target, and increase LNP blood circulation time in order to achieve highly effective toxin neutralization in vivo. Specifically, LNPs were modified with PLs-conjugated polyethylene glycol (PEG), and additional PEG was used to modify the PL-decorated LNPs (PL-PEG-LNPs). Histones were used as target toxins, and N-isopropylacrylamide-based PLs were used for histone capture. PEGylation increased the plasma LNP level 24 h after intravenous injection by â¼90 times and inhibited LNP aggregation after histone capture. The dissociation constant (Kd) of PL-PEG-LNPs against histone was two times smaller compared to that of PL-LNPs. Although PL-LNPs inhibited histone-platelet interaction in the bloodstream, a large amount of histone-PL-LNP complexes accumulated in the lungs because of aggregation. However, PL-PEG-LNPs inhibited both histone-platelet interaction and histone accumulation in the lungs. Importantly, PL-PEG-LNP treatment increased the survival rate of histone-treated mice compared to PL-LNPs. These results provide a platform for the development of abiotic antidote nanoparticles in vivo.
Asunto(s)
Nanopartículas , Polímeros , Animales , Ligandos , Lípidos , Ratones , Polietilenglicoles , ARN Interferente PequeñoRESUMEN
As current treatments for multiple sclerosis (MS) remain chemotherapeutic ones directed toward symptoms, the development of a curative treatment is urgently required. Herein, we show an autoreactive immune cell-targetable approach using autoantigen-modified liposomes for the curative treatment of MS. In these experiments, experimental autoimmune encephalomyelitis (EAE) induced by autoantigenic myelin oligodendrocyte glycoprotein (MOG) peptide was used as a model of primary progressive MS, and MOG-modified liposomes encapsulating doxorubicin (MOG-LipDOX) were used as a therapeutic drug. The results showed that the progression of encephalomyelitis symptoms was significantly suppressed by MOG-LipDOX injection, whereas the other samples failed to show any effect. Additionally, invasion of inflammatory immune cells into the spinal cord and demyelination of neurons were clearly suppressed in the MOG-LipDOX-treated mice. FACS analysis revealed that the number of both MOG-recognizable CD4+ T cells in the spleen was obviously decreased after MOG-LipDOX treatment. Furthermore, the number of effector Th17 cells in the spleen was significantly decreased and that of regulatory Treg cells was concomitantly increased. Finally, we demonstrated that myelin proteolipid protein (PLP)-modified liposomes encapsulating DOX (PLP-LipDOX) also showed the therapeutic effect on relapsing-remitting EAE. These findings indicate that autoantigen-modified liposomal drug produced a highly therapeutic effect on EAE by delivering the encapsulated drug to autoantigen-recognizable CD4+ T cells and thus suppressing autoreactive immune responses. The present study suggests that the use of these autoantigen-modified liposomes promises to be a suitable therapeutic approach for the cure of MS.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Autoantígenos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Liposomas , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Glicoproteína Mielina-OligodendrócitoRESUMEN
Synthetic polymers prepared using several functional monomers have attracted attention as cost-effective protein affinity reagents and alternative to antibodies. We previously reported the synthesis of poly NIPAm-based nanoparticles (NPs) using several functional monomers that can capture target molecules. In this study, we designed NPs for capturing glucose and inhibiting intestinal absorption in living mice. For capturing glucose, we focused on the Maillard reaction between primary amines and aldehyde residues. We hypothesized that the primary amine-containing NPs can capture the open-chain structure of glucose via the Maillard reaction and inhibit intestinal absorption. NPs were prepared by the precipitation polymerization of NIPAm, N-tert-butylacrylamide (TBAm), trifluoroacetate-protected N-(3-aminopropyl)methacrylamide (T-APM), and N,N'-methylenebisacrylamide. Then, T-APM in NPs was deprotected by NH3 (aq). The amount of glucose captured by NPs depended on the percentage of TBAm and APM in vitro. After 24 h, only 2% of orally administered NPs remained in the body after administration, suggesting that many NPs were excreted without being absorbed. The prepared NPs significantly inhibited an increase in blood glucose concentration after the oral administration of glucose and NPs, indicating that NPs capture glucose and inhibit intestinal absorption. These results show the potential of using synthetic polymer nanoparticles for inhibiting postprandial hyperglycemia.
Asunto(s)
Acrilamidas/química , Glucosa/metabolismo , Absorción Intestinal/efectos de los fármacos , Nanopartículas/administración & dosificación , Nanopartículas/química , Polímeros/química , Administración Oral , Animales , Glucosa/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos BALB C , Distribución TisularRESUMEN
Protein-protein (e.g., antibody-antigen) interactions comprise multiple weak interactions. We have previously reported that lipid nanoparticles (LNPs) bind to and neutralize target toxic peptides after multifunctionalization of the LNP surface (MF-LNPs) with amino acid derivatives that induce weak interactions; however, the MF-LNPs aggregated after target capture and showed short blood circulation times. Here we optimized polyethylene glycol (PEG)-modified MF-LNPs (PEG-MF-LNPs) to inhibit the aggregation and increase the blood circulation time. Melittin was used as a target toxin, and MF-LNPs were prepared with negatively charged, hydrophobic, and neutral amino-acid-derivative-conjugated functional lipids. In this study, MF-LNPs modified with only PEG5k (PEG5k-MF-LNPs) and with both PEG5k and PEG2k (PEGmix-MF-LNPs) were prepared, where PEG5k and PEG2k represent PEG with a molecular weight of 5000 and 2000, respectively. PEGylation of the MF-LNPs did not decrease the melittin neutralization ability of nonPEGylated MF-LNPs, as tested by hemolysis assay. The PEGmix-MF-LNPs showed better blood circulation characteristics than the PEG5k-MF-LNPs. Although the nonPEGylated MF-LNPs immediately aggregated when mixed with melittin, the PEGmix-MF-LNPs did not aggregate. The PEGmix-MF-LNPs dramatically increased the survival rate of melittin-treated mice, whereas the nonPEGylated MF-LNPs increased slightly. These results provide a fundamental strategy to improve the in vivo toxin neutralization ability of MF-LNPs.
Asunto(s)
Antídotos/farmacología , Meliteno/toxicidad , Nanopartículas Multifuncionales/química , Polietilenglicoles/química , Animales , Antídotos/química , Antídotos/farmacocinética , Bovinos , Línea Celular , Hemólisis/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/química , Masculino , Meliteno/sangre , Meliteno/metabolismo , Meliteno/farmacocinética , Ratones Endogámicos BALB C , Nanopartículas Multifuncionales/administración & dosificación , Nanopartículas Multifuncionales/metabolismo , Distribución TisularRESUMEN
Epidemiological studies have indicated that a disturbed circadian rhythm resulting from night-shift work is a potential risk factor for breast cancer. However, the mechanism of increased risk of breast cancer by night-shift work remains unclear, and there have been few in vivo studies conducted to definitively associate the two factors. In this study, BJMC3879Luc2 mouse breast cancer cells were transplanted into BALB/c mice. Mice were maintained under lighting conditions that modeled the two-shift system and were investigated for the effect of light/dark cycle disruption on tumor growth and lymph node metastasis. Circadian dysfunction, which was confirmed by measuring circadian locomotor activities using a nano tag device in our light/dark shift model, did not affect tumor growth. However, a significant increase in the number of lymph nodes with distant metastasis was observed. Neutrophil-to-lymphocyte ratio, which is an adverse prognostic factor of breast cancer and also indicator of inflammation, also increased. It has been demonstrated that a chronic inflammatory response is associated with cancer malignancy and poor prognosis in various cancers. These results suggest that night-shift work may also affect distant metastasis and prognosis. In addition, we investigated whether dietary quercetin has anti-metastatic activity against light/dark shift-induced metastasis. A diet containing 0.3 % quercetin significantly inhibited distant lymph node metastasis, particularly metastasis to the iliac and kidney lymph nodes. Our results contribute to our understandings of the effects of the external light environment on breast cancer metastasis and provide a glimpse into potential protective effects of dietary quercetin on light/dark disturbance-induced metastasis.
RESUMEN
Liposomal fasudil as a treatment for cerebral ischemia/reperfusion (I/R) injury has been demonstrated to be effective in animal models due to the high accumulation of liposomes in damaged brain tissue. However, it is still unclear what effect drug release rate has on the treatment of I/R injury, where pathology progresses dramatically in a short time. In the present study, we assessed four formulations of liposomal fasudil. The results of an in vitro drug release assay showed that the release properties of fasudil were changed by varying the lipid composition and internal phase of the liposomes. Based on these results, differences in the transition of fasudil plasma concentration were monitored after the administration of each type of liposomal fasudil in normal rats. A pharmacokinetic study showed that higher levels of drug retention in liposomal fasudil resulted in higher fasudil plasma concentration. Finally, treatment of I/R injury model rats with liposomal fasudil revealed that a mid-level release rate of fasudil from liposomes resulted in the greatest therapeutic effect among the formulations. In conclusion, these results demonstrate that an optimized drug release rate from liposomes enhances the therapeutic effect of fasudil for the treatment of cerebral I/R injury.
Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Liposomas/química , Daño por Reperfusión/tratamiento farmacológico , 1,2-Dipalmitoilfosfatidilcolina/química , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/sangre , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacocinética , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Sulfato de Amonio/química , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Ácido Cítrico/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Composición de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Liposomas/farmacocinética , Masculino , Fosfatidilcolinas/química , Compuestos de Amonio Cuaternario/química , Ratas Wistar , Daño por Reperfusión/patología , Resultado del TratamientoRESUMEN
Tissue factor (TF), which is well known as a trigger molecule of extrinsic coagulation, is found in not only tumor cells but also in stromal cells in tumor tissues. Thus, TF is a candidate molecule to potentially enable targeting of both tumor cells and stromal cells for anti-cancer drug delivery. Herein, we prepared liposomes conjugated with the Fab' fragment of anti-TF antibody (TF Ab-Lip) and evaluated the capability for drug delivery to stroma-rich tumors for realizing a whole tumor tissue-targetable strategy. When the targetability of TF Ab-Lip to TF-expressing KLN205 squamous tumor cells and NIH3T3 fibroblast cells were examined, TF Ab-Lip was significantly taken up into both cells compared with non-targeted liposomes. Corresponding to this result, doxorubicin-encapsulated TF Ab-Lip (TF Ab-LipDOX) showed potent cytotoxicity against KLN205 cells. In vivo experiments using KLN205 solid tumor-bearing mice indicated that TF Ab-Lip became highly accumulated and distributed widely in not only the tumor cell region but also in the stromal one in the tumor. Treatment with TF Ab-LipDOX significantly suppressed the growth of KLN205 solid tumors. Furthermore, TF Ab-Lip targetable both mouse and human TF (mhTF Ab-Lip) became distributed throughout stroma-rich human pancreatic BxPC3 tumors and the treatment of the BxPC3 tumor-bearing mice with mhTF Ab-LipDOX showed highest tumor-suppressive effect. These data suggest that TF Ab-Lip could achieve effective accumulation for stroma-rich tumor treatment.
Asunto(s)
Liposomas , Tromboplastina , Animales , Línea Celular Tumoral , Doxorrubicina , Sistemas de Liberación de Medicamentos , Ratones , Células 3T3 NIHRESUMEN
RNA interference induced by small interfering RNA (siRNA) is a promising strategy for the treatment of various intractable diseases including cancer. Lipid nanoparticles (LNP) composed of ionizable lipids and siRNA are known as a leading siRNA delivery system. However, LNPs composed of conventional ionizable lipids will be aggregated in the physiological environment because of loss of ionization. Therefore, the inclusion of hydrophilic polymer-conjugated lipids such as polyethylene glycol (PEG)-conjugated lipid is required to improve the LNP stability. Herein, we synthesized a novel charge-reversible lipid derivative, dioleoylglycerophosphate-diethylenediamine conjugate (DOP-DEDA). The surface of LNP composed of DOP-DEDA (DOP-DEDA LNP) was constantly ionized and positively charged at pH 6.0, almost neutral at pH 7.4, and negatively charged at pH 8.0. Importantly, DOP-DEDA LNP were stable in the physiological milieu without PEG-conjugated lipid. DOP-DEDA LNP disrupted the red blood cells only under the low-pH condition in a hemolysis assay, suggesting that the interaction between DOP-DEDA LNP and biological membranes is pH-dependent. DOP-DEDA LNP encapsulating siRNA against polo-like kinase 1 (siPLK1) highly suppressed the expression of PLK1 mRNA and its protein. The cellular uptake of DOP-DEDA LNP was increased in an apolipoprotein E3 (apoE3) dose-dependent manner. In addition, DOP-DEDA LNP was taken up into cancer cells via both clathrin- and caveola-mediated endocytosis pathways. These findings indicate that LNP composed of this charge-reversible lipid should be a highly stable and potent siRNA delivery vector.
Asunto(s)
Técnicas de Transferencia de Gen , Lípidos/síntesis química , Nanopartículas/química , ARN Interferente Pequeño/síntesis química , Línea Celular , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Lípidos/administración & dosificación , Nanopartículas/administración & dosificación , ARN Interferente Pequeño/administración & dosificaciónRESUMEN
The affinity of a synthetic polymer nanoparticle (NP) to a target biomacromolecule is determined by the association and dissociation rate constants (kon, koff) of the interaction. The individual rates and their sensitivity to local environmental influences are important factors for the on-demand capture and release a target biomacromolecule. Positively charged NPs for small interfering RNA (siRNA) delivery is a case in point. The knockdown efficacy of siRNA can be strongly influenced by the binding kinetics to the NP. Here, we show that kon and koff of siRNA to NPs can be individually engineered by tuning the chemical structure and composition of the NP. N-Isopropylacrylamide-based NPs functionalized with hydrophobic and amine monomers were used. koff decreased by increasing the amount of amine groups in the NP, whereas kon did not change. Importantly, NPs showing a low koff at pH 5.5 together with a high koff at pH 7.4 showed high knockdown efficiency when NP/siRNA complexes were packaged in lipid nanoparticles. These results provide direct evidence for the premise that the efficacy of an siRNA delivery vector is linked with the strong affinity to the siRNA in the endosome and low affinity in the cytoplasm.
Asunto(s)
Técnicas de Transferencia de Gen , Nanopartículas/química , ARN Interferente Pequeño/metabolismo , Acrilamidas/química , Animales , Línea Celular Tumoral , Citoplasma/metabolismo , Endosomas/metabolismo , Técnicas de Silenciamiento del Gen/métodos , Ratones , ARN Interferente Pequeño/genética , Polímeros de Estímulo Receptivo/químicaRESUMEN
Although N-methyl-d-aspartate receptor antagonists are hopeful therapeutic agents against cerebral ischemia/reperfusion (I/R) injury, effective approaches are needed to allow such agents to pass through the blood-brain barrier, thus increasing bioavailability of the antagonists to realize secure treatment. We previously demonstrated the usefulness of liposomal delivery of neuroprotectants via spaces between the disrupted blood-brain barrier induced after cerebral I/R. In the present study, a liposomal formulation of an N-methyl-d-aspartate receptor antagonist, ifenprodil, was newly designed; and the potential of liposomal ifenprodil was evaluated in transient middle cerebral artery occlusion rats. Ifenprodil was encapsulated into liposomes by a remote loading method using pH gradient between internal and external water phases of liposomes, focusing on differences of its solubility in water depending on pH. The encapsulated ifenprodil could be quickly released from the liposomes in vitro under a weakly acidic pH condition, which is a distinctive condition after cerebral I/R. Liposomal ifenprodil treatment significantly alleviated I/R-induced increase in permeability of the BBB by inhibiting superoxide anion production, resulting in ameliorating ischemic brain damage. Taken together, these results suggest that Ifen-Lip could become a hopeful neuroprotectant for cerebral I/R injury via efficient release of the encapsulated ifenprodil under weakly acidic pH conditions.