RESUMEN
Purpose: To investigate the effect of yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) on connective tissue growth factor (CTGF) expression in adult retinal pigment epithelial (ARPE)-19 cells. We also studied the inhibitory effect of K-975, a new pan-transcriptional enhanced associate domain (TEAD) inhibitor, and luteolin, a plant-derived flavonoid on CTGF expression. Methods: ARPE-19 cells were transfected with either YAP or TAZ overexpression plasmid or treated with transforming growth factor (TGF)-ß2. The cells were cultured either with or without K-975 or luteolin. The expression of YAP, TAZ, and CTGF was examined using real-time PCR. Results: ARPE-19 cells overexpressing YAP or TAZ exhibited significantly increased CTGF expression. This increase was attenuated by K-975 or luteolin alone. TGF-ß2 treatment significantly raised the expression of not just YAP and TAZ, but also CTGF in ARPE-19 cells. TGF-ß2 treatment-enhanced CTGF expression was considerably lowered by the addition of K-975 or luteolin. Conclusions: Overexpression of YAP or TAZ and treatment with TGF-ß2 led to an increase in the expression of CTGF in ARPE-19 cells. These increases were attenuated by treatment with K-975 and luteolin. These findings suggest that YAP and TAZ may be related to the expression of CTGF in ARPE-19 cells and that K-975 and luteolin can be explored as potential therapeutic agents for preventing CTGF production in vitreoretinal fibrosis.
Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Luteolina , Epitelio Pigmentado de la Retina , Factores de Transcripción , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Humanos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Luteolina/farmacología , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Línea Celular , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Factor de Crecimiento Transformador beta2/antagonistas & inhibidores , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genéticaRESUMEN
With recent rapid advancement of methodological tools, mechanistic understanding of biological processes leading to carcinogenesis is expanding. New approach methodologies such as transcriptomics can inform on non-genotoxic mechanisms of chemical carcinogens and can be developed for regulatory applications. The Organisation for the Economic Cooperation and Development (OECD) expert group developing an Integrated Approach to the Testing and Assessment (IATA) of Non-Genotoxic Carcinogens (NGTxC) is reviewing the possible assays to be integrated therein. In this context, we review the application of transcriptomics approaches suitable for pre-screening gene expression changes associated with phenotypic alterations that underlie the carcinogenic processes for subsequent prioritisation of downstream test methods appropriate to specific key events of non-genotoxic carcinogenesis. Using case studies, we evaluate the potential of gene expression analyses especially in relation to breast cancer, to identify the most relevant approaches that could be utilised as (pre-) screening tools, for example Gene Set Enrichment Analysis (GSEA). We also consider how to address the challenges to integrate gene panels and transcriptomic assays into the IATA, highlighting the pivotal omics markers identified for assay measurement in the IATA key events of inflammation, immune response, mitogenic signalling and cell injury.
Asunto(s)
Carcinógenos , Transcriptoma , Humanos , Carcinógenos/toxicidad , Bioensayo , Carcinogénesis , Pruebas de Carcinogenicidad/métodosRESUMEN
Azalamellarin N, a synthetic lactam congener of the marine natural product lamellarin N, and its A-ring-modified analogues were synthesized and evaluated as potent and non-covalent inhibitors of the drug-resistant epidermal growth factor receptor T790M/L858R mutant. An in vitro tyrosine kinase assay indicated that the inhibitory activities of the synthetic azalamellarin analogues were higher than those of the corresponding lamellarins. The azalamellarin analogue bearing two 3-(dimethylamino)propoxy groups at C20- and C21-positions exhibited the highest activity and selectivity against the mutant kinase [IC50 (T790M/L858R) = 1.7 nM; IC50 (WT) = 4.6 nM]. The inhibitory activity was attributed to the hydrogen bonding interaction between the lactam NH group of the B-ring and carbonyl group of a methionine residue.
Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Afatinib/farmacología , Línea Celular Tumoral , Gefitinib/farmacología , Humanos , Modelos Moleculares , Estructura Molecular , Mutación , Conformación ProteicaRESUMEN
The emergence of acquired resistance is a major concern associated with molecularly targeted kinase inhibitors. The C797S mutation in the epidermal growth factor receptor (EGFR) confers resistance to osimertinib, a third-generation EGFR-tyrosine kinase inhibitor (EGFR-TKI). We report that the derivatization of the marine alkaloid topoisomerase inhibitor lamellarin N provides a structurally new class of EGFR-TKIs. One of these, lamellarin 14, is effective against the C797S mutant EGFR. Bioinformatic analyses revealed that the derivatization transformed the topoisomerase inhibitor-like biological activity of lamellarin N into kinase inhibitor-like activity. Ba/F3 and PC-9 cells expressing the EGFR in-frame deletion within exon 19 (del ex19)/T790M/C797S triple-mutant were sensitive to lamellarin 14 in a dose range similar to the effective dose for cells expressing EGFR del ex19 or del ex19/T790M. Lamellarin 14 decreased the autophosphorylation of EGFR and the downstream signaling in the triple-mutant EGFR PC-9 cells. Furthermore, intraperitoneal administration of 10 mg/kg lamellarin 14 for 17 days suppressed tumor growth of the triple-mutant EGFR PC-9 cells in a mouse xenograft model using BALB/c nu/nu mice. Thus, lamellarin 14 serves as a novel structural backbone for an EGFR-TKI that prevents the development of cross-resistance against known drugs in this class.
Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Acrilamidas/farmacología , Compuestos de Anilina/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Ensayos de Selección de Medicamentos Antitumorales/métodos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fluoroacetatos , Expresión Génica , Compuestos Heterocíclicos de 4 o más Anillos/química , Xenoinjertos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Terapia Molecular Dirigida , Moluscos/química , Mutagénesis Sitio-Dirigida , Mutación , Inhibidores de Proteínas Quinasas/químicaRESUMEN
The Wnt/ß-catenin signaling pathway controls cell proliferation and differentiation, and therefore, when this pathway is excessively activated, it causes tumorigenesis. Our chemical suppressor screening in zebrafish embryos identified antifungal azoles including clotrimazole, miconazole, and itraconazole, as Wnt/ß-catenin signaling inhibitors. Here we show the mechanism underlying the Wnt/ß-catenin pathway inhibition by antifungal azoles. Clotrimazole reduced ß-catenin revels in a proteasome-independent fashion. By gene knockdown of two translational regulators, heme-regulated translational inhibitor and double-stranded RNA-induced protein kinase, we show that they mediate the clotrimazole-induced inhibition of the Wnt/ß-catenin pathway. Thus, clotrimazole inhibits the Wnt/ß-catenin pathway by decreasing ß-catenin protein levels through translational regulation. Antifungal azoles represent genuine candidate compounds for anticancer drugs or chemopreventive agents that reduce adenomatous polyps.
Asunto(s)
Clotrimazol/farmacología , Vía de Señalización Wnt/efectos de los fármacos , eIF-2 Quinasa/metabolismo , Animales , Antifúngicos , Azoles/farmacología , Activación Enzimática/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , beta Catenina/efectos de los fármacos , beta Catenina/metabolismoRESUMEN
BACKGROUND: Transcriptional co-activators YES-associated protein (YAP) and transcriptional coactivator with PDZ-motif (TAZ) stimulate the expression of cell cycle-related genes to permit for tumour cell growth. MLN8237 is a potent aurora-A kinase inhibitor; however, patients responding to MLN8237 are limited. Therefore, rational combination therapy could enhance their response. MATERIALS AND METHODS: YAP and TAZ were depleted using siRNA and then treated with MLN8237 in YAP/TAZ-dependent OVCAR-8 and MDA-MB-231 cell lines. MLN8237 was combined with fluvastatin, an agent constraining nuclear localisation of YAP/TAZ for potential combination therapy in vitro. RESULTS: Depletion of either YAP or TAZ sensitised these cell lines to MLN8237, resulting in apoptosis and reduction in aurora-A. MLN8237 reduced YAP/TAZ expression. A combination of MLN8237 with fluvastatin effectively reduced the cell viability of OVCAR-8 and MDA-MB-231 cell lines. CONCLUSION: A combination of MLN8237 and small-molecule agents inactivating YAP/TAZ, such as statins, could be a novel therapeutic strategy for YAP/TAZ-dependent cancer.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aurora Quinasa A/antagonistas & inhibidores , Azepinas/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas/metabolismo , Pirimidinas/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Aurora Quinasa A/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Sinergismo Farmacológico , Ácidos Grasos Monoinsaturados/farmacología , Fluvastatina , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Indoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Fosfoproteínas/genética , Interferencia de ARN , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAPRESUMEN
The main reasons for failure of cancer chemotherapy are intrinsic and acquired drug resistance. The Hippo pathway effector Yes-associated protein (YAP) is associated with resistance to both cytotoxic and molecular targeted drugs. Several lines of evidence indicate that YAP activates transcriptional programmes to promote cell cycle progression and DNA damage responses. Therefore, we hypothesised that YAP is involved in the sensitivity of cancer cells to small-molecule agents targeting cell cycle-related proteins. Here, we report that the inactivation of YAP sensitises the OVCAR-8 ovarian cancer cell line to AZD1775, a small-molecule WEE1 kinase inhibitor. The accumulation of DNA damage and mitotic failures induced by AZD1775-based therapy were further enhanced by YAP depletion. YAP depletion reduced the expression of the Fanconi anaemia (FA) pathway components required for DNA repair and their transcriptional regulator E2F1. These results suggest that YAP activates the DNA damage response pathway, exemplified by the FA pathway and E2F1. Furthermore, we aimed to apply this finding to combination chemotherapy against ovarian cancers. The regimen containing dasatinib, which inhibits the nuclear localisation of YAP, improved the response to AZD1775-based therapy in the OVCAR-8 ovarian cancer cell line. We propose that dasatinib acts as a chemosensitiser for a subset of molecular targeted drugs, including AZD1775, by targeting YAP.
RESUMEN
A series of A-ring-modified lamellarin N analogues were designed, synthesized, and evaluated as potential noncovalent inhibitors of the EGFR T790M/L858R mutant, a causal factor in the drug-resistant non-small cell lung cancer. Several water-soluble ammonium- or guanidinium-tethered analogues exhibited good kinase inhibitory activities. The most promising analogue, 14f, displayed an excellent inhibitory profile against the T790M/L858R mutant [IC50 (WT)â¯=â¯31.8â¯nM; IC50 (T790M/L858R)â¯=â¯8.9â¯nM]. The effects of A-ring-substituents on activity were rationalized by docking studies.
Asunto(s)
Diseño de Fármacos , Receptores ErbB/antagonistas & inhibidores , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Relación Dosis-Respuesta a Droga , Receptores ErbB/genética , Receptores ErbB/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Mutación , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-ActividadRESUMEN
BACKGROUND: Breast tumor heterogeneity leads to phenotypic diversity, such as tumor-initiating and metastatic properties and drug sensitivity. MATERIALS AND METHODS: We found that a self-floating cell (SFC) culture enriches a drug-resistant subpopulation in a HER2-positive breast cancer cell line. SFCs were analyzed for cancer stem cell markers, gene expression profiles, and sensitivity for anticancer drugs. RESULTS: SFCs expressed cancer stem cell markers, such as aldehyde dehydrogenase (ALDH) activity and elevated HER2 autophosphorylation. Gene expression profiles of SFCs showed a dramatic difference compared to those of parental or forced floating cells. SFCs also expressed CD133, a marker of drug resistance, and resisted cytotoxic drugs by drug efflux transporters. In contrast, HER2 kinase inhibitors efficiently reduced SFC viability. CONCLUSION: SFCs enrich drug-resistant subpopulations even in vitro and might reflect the highly plastic nature of breast cancer cells even in vitro.
Asunto(s)
Adenocarcinoma Papilar/patología , Adenocarcinoma/patología , Neoplasias de la Mama/patología , Técnicas de Cultivo de Célula/métodos , Células Madre Neoplásicas/patología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma Papilar/tratamiento farmacológico , Adenocarcinoma Papilar/genética , Adenocarcinoma Papilar/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Western Blotting , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Citometría de Flujo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas In Vitro , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Fenotipo , Células Tumorales CultivadasRESUMEN
AIM: To identify non-quinazoline kinase inhibitors effective against drug resistant mutants of epidermal growth factor receptor (EGFR). METHODS: A kinase inhibitor library was subjected to screening for specific inhibition pertaining to the in vitro kinase activation of EGFR with the gatekeeper mutation T790M, which is resistant to small molecular weight tyrosine kinase inhibitors (TKIs) for EGFR in non-small cell lung cancers (NSCLCs). This inhibitory effect was confirmed by measuring autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells, an NSCLC cell line harboring the gatekeeper mutation. The effects of a candidate compound, Janus kinase 3 (JAK3) inhibitor VI, on cell proliferation were evaluated using the MTT assay and were compared between T790M-positive and -negative lung cancer cell lines. JAK3 inhibitor VI was modeled into the ATP-binding pocket of EGFR T790M/L858R. Potential physical interactions between the compound and kinase domains of wild-type (WT) or mutant EGFRs or JAK3 were estimated by calculating binding energy. The gatekeeper residues of EGFRs and JAKs were aligned to discuss the similarities among EGFR T790M and JAKs. RESULTS: We found that JAK3 inhibitor VI, a known inhibitor for JAK3 tyrosine kinase, selectively inhibits EGFR T790M/L858R, but has weaker inhibitory effects on the WT EGFR in vitro. JAK3 inhibitor VI also specifically reduced autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells upon EGF stimulation, but did not show the inhibitory effect on WT EGFR in A431 cells. Furthermore, JAK3 inhibitor VI suppressed the proliferation of NCI-H1975 cells, but showed limited inhibitory effects on the WT EGFR-expressing cell lines A431 and A549. A docking simulation between JAK3 inhibitor VI and the ATP-binding pocket of EGFR T790M/L858R predicted a potential binding status with hydrogen bonds. Estimated binding energy of JAK3 inhibitor VI to EGFR T790M/L858R was more stable than its binding energy to the WT EGFR. Amino acid sequence alignments revealed that the gatekeeper residues of JAK family kinases are methionine in WT, similar to EGFR T790M, suggesting that TKIs for JAKs may also be effective for EGFR T790M. CONCLUSION: Our findings demonstrate that JAK3 inhibitor VI is a gatekeeper mutant selective TKI and offer a strategy to search for new EGFR T790M inhibitors.
RESUMEN
YAP and TAZ oncoproteins confer malignancy and drug resistance to various cancer types. We screened for small molecules that inhibit the nuclear localization of YAP/TAZ. Dasatinib, statins and pazopanib inhibited the nuclear localization and target gene expression of YAP and TAZ. All three drugs induced phosphorylation of YAP and TAZ, and pazopanib induced proteasomal degradation of YAP/TAZ. The sensitivities to these drugs are correlated with dependence on YAP/TAZ in breast cancer cell lines. Combinations of these compounds with each other or with other anti-cancer drugs efficiently reduced cell proliferation of YAP/TAZ-dependent breast cancer cells. These results suggest that these drugs can be therapeutics and chemosensitizers for YAP/TAZ-dependent breast cancers.
RESUMEN
Genetic screening for suppressor mutants has been successfully used to identify important signaling regulators. Using an analogy to genetic suppressor screening, we developed a chemical suppressor screening method to identify inhibitors of the Wnt/ß-catenin signaling pathway. We used zebrafish embryos in which chemically induced ß-catenin accumulation led to an "eyeless" phenotype and conducted a pilot screening for compounds that restored eye development. This approach allowed us to identify geranylgeranyltransferase inhibitor 286 (GGTI-286), a geranylgeranyltransferase (GGTase) inhibitor. Our follow-up studies showed that GGTI-286 reduces nuclear localization of ß-catenin and transcription dependent on ß-catenin/T cell factor in mammalian cells. In addition to pharmacological inhibition, GGTase gene knockdown also attenuates the nuclear function of ß-catenin. Overall, we validate our chemical suppressor screening as a method for identifying Wnt/ß-catenin pathway inhibitors and implicate GGTase as a potential therapeutic target for Wnt-activated cancers.
Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Leucina/análogos & derivados , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Pez Cebra/metabolismo , beta Catenina/metabolismo , Transferasas Alquil y Aril/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Ojo/efectos de los fármacos , Ojo/crecimiento & desarrollo , Leucina/química , Leucina/farmacología , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Pez Cebra/anatomía & histología , Pez Cebra/genéticaRESUMEN
Accurate chromosome segregation is vital for cell viability. Many cancer cells show chromosome instability (CIN) due to aberrant expression of the genes involved in chromosome segregation. The induction of massive chromosome segregation errors in such cancer cells by small molecule inhibitors is an emerging strategy to kill these cells selectively. Here we screened and characterized small molecule inhibitors which cause mitotic chromosome segregation errors to target cancer cell growth. We screened about 300 chemicals with known targets, and found that Rho-associated coiled-coil kinase (ROCK) inhibitors bypassed the spindle assembly checkpoint (SAC), which delays anaphase onset until proper kinetochore-microtubule interactions are established. We investigated how ROCK inhibitors affect chromosome segregation, and found that they induced microtubule-dependent centrosome fragmentation. Knockdown of ROCK1 and ROCK2 revealed their additive roles in centrosome integrity. Pharmacological inhibition of LIMK also induced centrosome fragmentation similar to that by ROCK inhibitors. Inhibition of ROCK or LIMK hyper-stabilized mitotic spindles and impaired Aurora-A activation. These results suggested that ROCK and LIMK are directly or indirectly involved in microtubule dynamics and activation of Aurora-A. Furthermore, inhibition of ROCK or LIMK suppressed T cell leukemia growth in vitro, but not peripheral blood mononuclear cells. They induced centrosome fragmentation and apoptosis in T cell leukemia cells. These results suggested that ROCK and LIMK can be a potential target for anti-cancer drugs.
Asunto(s)
Antineoplásicos/farmacología , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Apoptosis , Línea Celular Tumoral , Centrosoma/efectos de los fármacos , Inestabilidad Cromosómica , Segregación Cromosómica/efectos de los fármacos , Fragmentación del ADN , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leucemia/tratamiento farmacológico , Quinasas Lim/antagonistas & inhibidores , Quinasas Asociadas a rho/antagonistas & inhibidoresRESUMEN
Kinetochores attach the replicated chromosomes to the mitotic spindle and orchestrate their transmission to the daughter cells. Kinetochore-spindle binding and chromosome segregation are mediated by the multi-copy KNL1(Spc105), MIS12(Mtw1) and NDC80(Ndc80) complexes that form the so-called KMN network. KMN-spindle attachment is regulated by the Aurora B(Ipl1) and MPS1(Mps1) kinases. It is unclear whether other mechanisms exist that support KMN activity during the cell cycle. Using budding yeast, we show that kinetochore protein Cnn1 localizes to the base of the Ndc80 complex and promotes a functionally competent configuration of the KMN network. Cnn1 regulates KMN activity in a spatiotemporal manner by inhibiting the interaction between its complexes. Cnn1 activity peaks in anaphase and is driven by the Cdc28, Mps1 and Ipl1 kinases.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Anafase , Proteínas de Ciclo Celular/genética , Cromosomas Fúngicos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/metabolismoRESUMEN
Proper chromosome segregation in mitosis relies on correct kinetochore-microtubule (KT-MT) interactions. The KT initially interacts with the lateral surface of a single MT (lateral attachment) extending from a spindle pole and is subsequently anchored at the plus end of the MT (end-on attachment). The conversion from lateral to end-on attachment is crucial because end-on attachment is more robust and thought to be necessary to sustain KT-MT attachment when tension is applied across sister KTs upon their biorientation. The mechanism for this conversion is still elusive. The Ndc80 complex is an essential component of the KT-MT interface, and here we studied a role of the Ndc80 loop region, a distinct motif looping out from the coiled-coil shaft of the complex, in Saccharomyces cerevisiae. With deletions or mutations of the loop region, the lateral KT-MT attachment occurred normally; however, subsequent conversion to end-on attachment was defective, leading to failure in sister KT biorientation. The Ndc80 loop region was required for Ndc80-Dam1 interaction and KT loading of the Dam1 complex, which in turn supported KT tethering to the dynamic MT plus end. The Ndc80 loop region, therefore, has an important role in the conversion from lateral to end-on attachment, a crucial maturation step of KT-MT interaction.
Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Secuencia de Aminoácidos , Cinetocoros/química , Cinetocoros/fisiología , Cinetocoros/ultraestructura , Microtúbulos/química , Microtúbulos/ultraestructura , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Alineación de SecuenciaRESUMEN
Lipoteichoic acid (LTA) is one of two anionic polymers on the surface of the gram-positive bacterium Staphylococcus aureus. LTA is critical for the bacterium-host cell interaction and has recently been shown to be required for cell growth and division. To determine additional biological roles of LTA, we found it necessary to identify permissive conditions for the growth of an LTA-deficient mutant. We found that an LTA-deficient S. aureus Delta ltaS mutant could grow at 30 degrees C but not at 37 degrees C. Even at the permissive temperature, Delta ltaS mutant cells had aberrant cell division and separation, decreased autolysis, and reduced levels of peptidoglycan hydrolases. Upshift of Delta ltaS mutant cells to a nonpermissive temperature caused an inability to exclude Sytox green dye. A high-osmolarity growth medium remarkably rescued the colony-forming ability of the Delta ltaS mutant at 37 degrees C, indicating that LTA synthesis is required for growth under low-osmolarity conditions. In addition, the Delta ltaS mutation was found to be synthetically lethal with the Delta tagO mutation, which disrupts the synthesis of the other anionic polymer, wall teichoic acid (WTA), at 30 degrees C, suggesting that LTA and WTA compensate for one another in an essential function.
Asunto(s)
Ligasas/metabolismo , Lipopolisacáridos/biosíntesis , Staphylococcus aureus/genética , Ácidos Teicoicos/biosíntesis , Cartilla de ADN , Amplificación de Genes , Vectores Genéticos , Glicerofosfatos/biosíntesis , Lipopolisacáridos/deficiencia , Mutación , Compuestos Orgánicos/metabolismo , Reacción en Cadena de la Polimerasa , Staphylococcus aureus/enzimología , Staphylococcus aureus/crecimiento & desarrollo , Temperatura , TermodinámicaRESUMEN
Cytochrome P450 from thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7 (P450st) has been expressed in Escherichia coli and purified at high homogeneity. P450st was crystallized in an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions of a=53.6 A, b=55.1 A, and c=130.9 A, and the structure was determined at a 3.0 A resolution. The final R-factor was 0.194 (Rfree=0.235). Structural comparison with cytochrome P450 from S. solfataricus (CYP119) suggests that the region composed of the F to G helices and the Cl- binding site is responsible for the affinity for a ligand coordinating heme iron. Direct electrochemistry of P450st in a didodecyldimethylammonium bromide (DDAB) film on a plastic formed carbon (PFC) electrode has also been demonstrated. A quasi-reversible redox response has been observed even at elevated temperatures of up to 80 degrees C.
Asunto(s)
Proteínas Bacterianas/química , Sistema Enzimático del Citocromo P-450/química , Sulfolobus/enzimología , Sitios de Unión , Cristalografía por Rayos X , Electroquímica , Hemo/química , Estructura Terciaria de ProteínaRESUMEN
Lysylphosphatidylglycerol (LPG) is a basic phospholipid in which L-lysine from lysyl-tRNA is transferred to phosphatidylglycerol (PG). This study examined whether the Staphylococcus aureus mprF gene encodes LPG synthetase. A crude membrane fraction prepared from wild-type S. aureus cells had LPG synthetase activity that depended on PG and lysyl-tRNA, whereas the membrane fraction from an mprF deletion mutant did not. When S. aureus MprF protein was trans-expressed in wild-type Escherichia coli cells, LPG synthesis was induced, whereas it was not observed in E. coli pgsA3 mutant cells in which the amount of PG is significantly reduced. In addition, LPG synthetase activity and a 93 kDa protein whose molecular size corresponded to that of MprF protein were co-induced in the crude membrane fraction prepared from E. coli cells expressing MprF protein. The Km values of the LPG synthetase activity for PG and for lysyl-tRNA were 56 microM and 6.9 microM, respectively, consistent with those of S. aureus membranes. These results suggest that the MprF protein is LPG synthetase.