RESUMEN
Current differentiation protocols for human induced pluripotent stem cells (hiPSCs) produce heterogeneous cardiomyocytes (CMs). Although chamber-specific CM selection using cell surface antigens enhances biomedical applications, a cell surface marker that accurately distinguishes between hiPSC-derived atrial CMs (ACMs) and ventricular CMs (VCMs) has not yet been identified. We have developed an approach for obtaining functional hiPSC-ACMs and -VCMs based on CD151 expression. For ACM differentiation, we found that ACMs are enriched in the CD151low population and that CD151 expression is correlated with the expression of Notch4 and its ligands. Furthermore, Notch signaling inhibition followed by selecting the CD151low population during atrial differentiation leads to the highly efficient generation of ACMs as evidenced by gene expression and electrophysiology. In contrast, for VCM differentiation, VCMs exhibiting a ventricular-related gene signature and uniform action potentials are enriched in the CD151high population. Our findings enable the production of high-quality ACMs and VCMs appropriate for hiPSC-derived chamber-specific disease models and other applications.
Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular/fisiología , Ventrículos Cardíacos , Miocitos Cardíacos/metabolismo , Tetraspanina 24/genética , Tetraspanina 24/metabolismoRESUMEN
Human induced pluripotent stem cell-derived (hiPSC) cardiomyocytes are a promising source for regenerative therapy. To realize this therapy, however, their engraftment potential after their injection into the host heart should be improved. Here, we established an efficient method to analyze the cell cycle activity of hiPSC cardiomyocytes using a fluorescence ubiquitination-based cell cycle indicator (FUCCI) system. In vitro high-throughput screening using FUCCI identified a retinoic acid receptor (RAR) agonist, Am80, as an effective cell cycle activator in hiPSC cardiomyocytes. The transplantation of hiPSC cardiomyocytes treated with Am80 before the injection significantly enhanced the engraftment in damaged mouse heart for 6 months. Finally, we revealed that the activation of endogenous Wnt pathways through both RARA and RARB underlies the Am80-mediated cell cycle activation. Collectively, this study highlights an efficient method to activate cell cycle in hiPSC cardiomyocytes by Am80 as a means to increase the graft size after cell transplantation into a damaged heart.
Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Animales , Ratones , Humanos , Receptores de Ácido Retinoico/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Ciclo Celular , Diferenciación CelularRESUMEN
For regenerative cell therapies using pluripotent stem cell (PSC)-derived cells, large quantities of purified cells are required. Magnetic-activated cell sorting (MACS) is a powerful approach to collect target antigen-positive cells; however, it remains a challenge to purify various cell types efficiently at large scale without using antibodies specific to the desired cell type. Here we develop a technology that combines microRNA (miRNA)-responsive mRNA switch (miR-switch) with MACS (miR-switch-MACS) to purify large amounts of PSC-derived cells rapidly and effectively. We designed miR-switches that detect specific miRNAs expressed in target cells and controlled the translation of a CD4-coding transgene as a selection marker for MACS. For the large-scale purification of induced PSC-derived cardiomyocytes (iPSC-CMs), we transferred miR-208a-CD4 switch-MACS and obtained purified iPSC-CMs efficiently. Moreover, miR-375-CD4 switch-MACS highly purified pancreatic insulin-producing cells and their progenitors expressing Chromogranin A. Overall, the miR-switch-MACS method can efficiently purify target PSC-derived cells for cell replacement therapy.
Asunto(s)
Células Madre Pluripotentes Inducidas , MicroARNs , Diferenciación Celular/genética , Separación Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Fenómenos Magnéticos , MicroARNs/genética , MicroARNs/metabolismoRESUMEN
The effects of transcription factors on the maintenance and differentiation of human-induced or embryonic pluripotent stem cells (iPSCs/ESCs) have been well studied. However, the importance of posttranscriptional regulatory mechanisms, which cause the quantitative dissociation of mRNA and protein expression, has not been explored in detail. Here, by combining transcriptome and proteome profiling, we identified 228 posttranscriptionally regulated genes with strict upregulation of the protein level in iPSCs/ESCs. Among them, we found 84 genes were vital for the survival of iPSCs and HDFs, including 20 genes that were specifically necessary for iPSC survival. These 20 proteins were upregulated only in iPSCs/ESCs and not in differentiated cells derived from the three germ layers. Although there are still unknown mechanisms that downregulate protein levels in HDFs, these results reveal that posttranscriptionally regulated genes have a crucial role in iPSC survival.
RESUMEN
Xeno-free culture systems have expanded the clinical and industrial application of human pluripotent stem cells (PSCs). However, reproducibility issues, often arising from variability during passaging steps, remain. Here, we describe an improved method for the subculture of human PSCs. The revised method significantly enhances the viability of human PSCs by lowering DNA damage and apoptosis, resulting in more efficient and reproducible downstream applications such as gene editing and directed differentiation. Furthermore, the method does not alter PSC characteristics after long-term culture and attenuates the growth advantage of abnormal subpopulations. This robust passaging method minimizes experimental error and reduces the rate of PSCs failing quality control of human PSC research and application.
Asunto(s)
Células Madre Pluripotentes , Humanos , Reproducibilidad de los Resultados , Diferenciación Celular/genéticaRESUMEN
X-linked sideroblastic anemia (XLSA) is associated with mutations in the erythroid-specific δ-aminolevulinic acid synthase (ALAS2) gene. Treatment of XLSA is mainly supportive, except in patients who are pyridoxine responsive. Female XLSA often represents a late onset of severe anemia, mostly related to the acquired skewing of X chromosome inactivation. In this study, we successfully generated active wild-type and mutant ALAS2-induced pluripotent stem cell (iPSC) lines from the peripheral blood cells of an affected mother and 2 daughters in a family with pyridoxine-resistant XLSA related to a heterozygous ALAS2 missense mutation (R227C). The erythroid differentiation potential was severely impaired in active mutant iPSC lines compared with that in active wild-type iPSC lines. Most of the active mutant iPSC-derived erythroblasts revealed an immature morphological phenotype, and some showed dysplasia and perinuclear iron deposits. In addition, globin and HO-1 expression and heme biosynthesis in active mutant erythroblasts were severely impaired compared with that in active wild-type erythroblasts. Furthermore, genes associated with erythroblast maturation and karyopyknosis showed significantly reduced expression in active mutant erythroblasts, recapitulating the maturation defects. Notably, the erythroid differentiation ability and hemoglobin expression of active mutant iPSC-derived hematopoietic progenitor cells (HPCs) were improved by the administration of δ-aminolevulinic acid, verifying the suitability of the cells for drug testing. Administration of a DNA demethylating agent, azacitidine, reactivated the silent, wild-type ALAS2 allele in active mutant HPCs and ameliorated the erythroid differentiation defects, suggesting that azacitidine is a potential novel therapeutic drug for female XLSA. Our patient-specific iPSC platform provides novel biological and therapeutic insights for XLSA.
Asunto(s)
5-Aminolevulinato Sintetasa , Piridoxina , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , Ácido Aminolevulínico , Anemia Sideroblástica , Azacitidina/farmacología , Azacitidina/uso terapéutico , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X , Humanos , Preparaciones Farmacéuticas , Piridoxina/farmacología , Piridoxina/uso terapéuticoRESUMEN
RNA sequencing profiles and characterizes cell and tissue samples, giving important insights into molecular mechanisms. Such data is imperative for cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) and used in related translational and basic research. Here we provide reliable protocols to extract differentially expressed genes in iPSC-CMs with RNA sequencing.
Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/química , RNA-Seq/métodos , Transcriptoma , Diferenciación Celular/genética , Células Cultivadas , Mapeo Cromosómico , Perfilación de la Expresión Génica , Biblioteca de Genes , Genes Reporteros , Genoma Humano , Humanos , MicroARNs/genética , Análisis de Componente Principal , ARN/aislamiento & purificación , Alineación de Secuencia , Programas InformáticosRESUMEN
Hand1 and Hand2 are transcriptional factors, and knockout mice of these genes show left and right ventricular hypoplasia, respectively. However, their function and expression in human cardiogenesis are not well studied. To delineate their expressions and assess their functions in human cardiomyocytes (CMs) in vitro, we established two triple-reporter human induced pluripotent stem cell lines that express HAND1mCherry, HAND2EGFP and either MYH6-driven iRFP670 or tagBFP constitutively and investigated their expression dynamics during cardiac differentiation. On day 5 of the differentiation, HAND1 expression marked cardiac progenitor cells. We profiled the CM subpopulations on day 20 with RNA sequencing and found that mCherry+ CMs showed higher proliferative ability than mCherry- CMs and identified a gene network of LEF1, HAND1, and HAND2 to regulate proliferation in CMs. Finally, we identified CD105 as a surface marker of highly proliferative CMs.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Miocitos Cardíacos/metabolismo , Transcriptoma/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclo Celular/genética , Proliferación Celular/genética , Células Cultivadas , Redes Reguladoras de Genes/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Miocitos Cardíacos/citología , Interferencia de ARN , RNA-Seq/métodos , Factores de TiempoRESUMEN
One of the earliest maturation steps in cardiomyocytes (CMs) is the sarcomere protein isoform switch between TNNI1 and TNNI3 (fetal and neonatal/adult troponin I). Here, we generate human induced pluripotent stem cells (hiPSCs) carrying a TNNI1EmGFP and TNNI3mCherry double reporter to monitor and isolate mature sub-populations during cardiac differentiation. Extensive drug screening identifies two compounds, an estrogen-related receptor gamma (ERRγ) agonist and an S-phase kinase-associated protein 2 inhibitor, that enhances cardiac maturation and a significant change to TNNI3 expression. Expression, morphological, functional, and molecular analyses indicate that hiPSC-CMs treated with the ERRγ agonist show a larger cell size, longer sarcomere length, the presence of transverse tubules, and enhanced metabolic function and contractile and electrical properties. Here, we show that ERRγ-treated hiPSC-CMs have a mature cellular property consistent with neonatal CMs and are useful for disease modeling and regenerative medicine.
Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Receptores de Estrógenos/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Receptores de Estrógenos/química , Proteínas Quinasas Asociadas a Fase-S/antagonistas & inhibidores , Sarcolema/efectos de los fármacos , Sarcolema/metabolismo , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo , Transcriptoma/efectos de los fármacos , Troponina I/genética , Troponina I/metabolismoRESUMEN
Human pluripotent stem cells (PSCs) express human endogenous retrovirus type-H (HERV-H), which exists as more than a thousand copies on the human genome and frequently produces chimeric transcripts as long-non-coding RNAs (lncRNAs) fused with downstream neighbor genes. Previous studies showed that HERV-H expression is required for the maintenance of PSC identity, and aberrant HERV-H expression attenuates neural differentiation potentials, however, little is known about the actual of function of HERV-H. In this study, we focused on ESRG, which is known as a PSC-related HERV-H-driven lncRNA. The global transcriptome data of various tissues and cell lines and quantitative expression analysis of PSCs showed that ESRG expression is much higher than other HERV-Hs and tightly silenced after differentiation. However, the loss of function by the complete excision of the entire ESRG gene body using a CRISPR/Cas9 platform revealed that ESRG is dispensable for the maintenance of the primed and naïve pluripotent states. The loss of ESRG hardly affected the global gene expression of PSCs or the differentiation potential toward trilineage. Differentiated cells derived from ESRG-deficient PSCs retained the potential to be reprogrammed into induced PSCs (iPSCs) by the forced expression of OCT3/4, SOX2, and KLF4. In conclusion, ESRG is dispensable for the maintenance and recapturing of human pluripotency.
Asunto(s)
Células Madre Pluripotentes/metabolismo , ARN Largo no Codificante/genética , Diferenciación Celular/genética , Células Cultivadas , Reprogramación Celular , Femenino , Silenciador del Gen , Humanos , Factor 4 Similar a Kruppel , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Madre Pluripotentes/citologíaRESUMEN
Human pluripotent stem cell-derived cardiomyocytes (CMs) are a promising tool for cardiac cell therapy. Although transplantation of induced pluripotent stem cell (iPSC)-derived CMs have been reported in several animal models, the treatment effect was limited, probably due to poor optimization of the injected cells. To optimize graft cells for cardiac reconstruction, we compared the engraftment efficiency of intramyocardially-injected undifferentiated-iPSCs, day 4 mesodermal cells, and day 8, day 20, and day 30 purified iPSC-CMs after initial differentiation by tracing the engraftment ratio (ER) using in vivo bioluminescence imaging. This analysis revealed the ER of day 20 CMs was significantly higher compared to other cells. Transplantation of day 20 CMs into the infarcted hearts of immunodeficient mice showed good engraftment, and echocardiography showed significant functional improvement by cell therapy. Moreover, the imaging signal and ratio of Ki67-positive CMs at 3 months post injection indicated engrafted CMs proliferated in the host heart. Although this graft growth reached a plateau at 3 months, histological analysis confirmed progressive maturation from 3 to 6 months. These results suggested that day 20 CMs had very high engraftment, proliferation, and therapeutic potential in host mouse hearts. They also demonstrate this model can be used to track the fate of transplanted cells over a long time.
Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Supervivencia de Injerto , Células Madre Pluripotentes Inducidas/fisiología , Infarto del Miocardio/terapia , Miocitos Cardíacos/trasplante , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Proliferación Celular , Rastreo Celular , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Antígeno Ki-67/genética , Antígeno Ki-67/inmunología , Masculino , Ratones , Ratones Endogámicos NOD , Infarto del Miocardio/inmunología , Infarto del Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Imagen ÓpticaRESUMEN
Isolation of specific cell types, including pluripotent stem cell (PSC)-derived populations, is frequently accomplished using cell surface antigens expressed by the cells of interest. However, specific antigens for many cell types have not been identified, making their isolation difficult. Here, we describe an efficient method for purifying cells based on endogenous miRNA activity. We designed synthetic mRNAs encoding a fluorescent protein tagged with sequences targeted by miRNAs expressed by the cells of interest. These miRNA switches control their translation levels by sensing miRNA activities. Several miRNA switches (miR-1-, miR-208a-, and miR-499a-5p-switches) efficiently purified cardiomyocytes differentiated from human PSCs, and switches encoding the apoptosis inducer Bim enriched for cardiomyocytes without cell sorting. This approach is generally applicable, as miR-126-, miR-122-5p-, and miR-375-switches purified endothelial cells, hepatocytes, and insulin-producing cells differentiated from hPSCs, respectively. Thus, miRNA switches can purify cell populations for which other isolation strategies are unavailable.
Asunto(s)
Separación Celular/métodos , MicroARNs/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Secuencia de Bases , Proteína 11 Similar a Bcl2 , Citometría de Flujo , Células HeLa , Hepatocitos/citología , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Secretoras de Insulina/citología , Proteínas de la Membrana/metabolismo , Ratones , MicroARNs/genética , Miocardio/citología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/trasplante , Especificidad de Órganos , Proteínas Proto-Oncogénicas/metabolismoRESUMEN
Early embryonic rodent ventricular cells exhibit spontaneous action potential (AP), which disappears in later developmental stages. Here, we used 3 mathematical models-the Kyoto, Ten Tusscher-Panfilov, and Luo-Rudy models-to present an overview of the functional landscape of developmental changes in embryonic ventricular cells. We switched the relative current densities of 9 ionic components in the Kyoto model, and 160 of 512 representative combinations were predicted to result in regular spontaneous APs, in which the quantitative changes in Na(+) current (I Na) and funny current (I f) made large contributions to a wide range of basic cycle lengths. In all three models, the increase in inward rectifier current (I K1) before the disappearance of I f was predicted to result in abnormally high intracellular Ca(2+) concentrations. Thus, we demonstrated that the developmental changes in APs were well represented, as I Na increased before the disappearance of I f, followed by a 10-fold increase in I K1.