Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38892554

RESUMEN

This study examined whey protein's impact on insulin resistance in a high-fat diet-induced pediatric obesity mouse model. Pregnant mice were fed high-fat diets, and male pups continued this diet until 8 weeks old, then were split into high-fat, whey, and casein diet groups. At 12 weeks old, their body weight, fasting blood glucose (FBG), blood insulin level (IRI), homeostatic model assessment for insulin resistance (HOMA-IR), liver lipid metabolism gene expression, and liver metabolites were compared. The whey group showed significantly lower body weight than the casein group at 12 weeks old (p = 0.034). FBG was lower in the whey group compared to the high-fat diet group (p < 0.01) and casein group (p = 0.058); IRI and HOMA-IR were reduced in the whey group compared to the casein group (p = 0.02, p < 0.01, p < 0.01, respectively). The levels of peroxisome proliferator-activated receptor α and hormone-sensitive lipase were upregulated in the whey group compared to the casein group (p < 0.01, p = 0.03). Metabolomic analysis revealed that the levels of taurine and glycine, both known for their anti-inflammatory and antioxidant properties, were upregulated in the whey group in the liver tissue (p < 0.01, p < 0.01). The intake of whey protein was found to improve insulin resistance in a high-fat diet-induced pediatric obesity mouse model.


Asunto(s)
Dieta Alta en Grasa , Resistencia a la Insulina , Obesidad Infantil , Proteína de Suero de Leche , Animales , Femenino , Masculino , Ratones , Embarazo , Glucemia/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Insulina/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones Endogámicos C57BL , Obesidad Infantil/metabolismo , Proteína de Suero de Leche/farmacología
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928001

RESUMEN

We examined whether the administration of growth hormone (GH) improves insulin resistance in females of a non-obese hyperglycemic mouse model after birth with low birth weight (LBW), given that GH is known to increase muscle mass. The intrauterine Ischemia group underwent uterine artery occlusion for 15 min on day 16.5 of gestation. At 4 weeks of age, female mice in the Ischemia group were divided into the GH-treated (Ischemia-GH) and non-GH-treated (Ischemia) groups. At 8 weeks of age, the glucose metabolism, muscle pathology, and metabolome of liver were assessed. The insulin resistance index improved in the Ischemia-GH group compared with the Ischemia group (p = 0.034). The percentage of type 1 muscle fibers was higher in the Ischemia-GH group than the Ischemia group (p < 0.001); the muscle fiber type was altered by GH. In the liver, oxidative stress factors were reduced, and ATP production was increased in the Ischemia-GH group compared to the Ischemia group (p = 0.014), indicating the improved mitochondrial function of liver. GH administration is effective in improving insulin resistance by increasing the content of type 1 muscle fibers and improving mitochondrial function of liver in our non-obese hyperglycemic mouse model after birth with LBW.


Asunto(s)
Modelos Animales de Enfermedad , Hiperglucemia , Resistencia a la Insulina , Hígado , Animales , Femenino , Humanos , Ratones , Embarazo , Hormona de Crecimiento Humana/farmacología , Hormona de Crecimiento Humana/administración & dosificación , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteínas Recombinantes/farmacología
3.
Pediatr Neonatol ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38789293

RESUMEN

We aimed to characterize the metabolomic profiles in preterm small-for-gestational age (SGA) infants using cord blood. We conducted a gestational age (GA)-matched case-control study that included 30 preterm infants who were categorized into two groups: SGA infants, with a birth weight (BW) < 10th percentile for GA (n = 15) and non-SGA infants, with BW ≥ 10th percentile for GA (n = 15). SGA infants with chromosomal or genetic abnormalities were excluded. At birth, the umbilicus was double-clamped, and the cord blood was sampled from the umbilical vein. Metabolomic analyses were performed using capillary electrophoresis time-of-flight mass spectrometry. The median GA at birth was not significantly different between the two groups [SGA, 32 (26-36) weeks; non-SGA, 32 (25-35) weeks; p = 0.661)]. Of the 255 metabolites analyzed, 19 (7.5%) showed significant differences between SGA and non-SGA infants. There were significant reductions in the carnosine, hypotaurine, and S-methylcysteine levels in SGA infants as compared to non-SGA infants (p < 0.05). Carnosine was correlated with gestational age, BMI before pregnancy, body weight gain during pregnancy (p = 0.002, p = 0.023, and p = 0.020, respectively). In conclusion, preterm SGA infants have low levels of cord blood antioxidative- and antiglycation-related metabolites, making them vulnerable to oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...