Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Stem Cell Res Ther ; 15(1): 106, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627844

RESUMEN

BACKGROUND: Although oncogenic RAS mutants are thought to exert mutagenic effects upon blood cells, it remains uncertain how a single oncogenic RAS impacts non-transformed multipotent hematopoietic stem or progenitor cells (HPCs). Such potential pre-malignant status may characterize HPCs in patients with RAS-associated autoimmune lymphoproliferative syndrome-like disease (RALD). This study sought to elucidate the biological and molecular alterations in human HPCs carrying monoallelic mutant KRAS (G13C) with no other oncogene mutations. METHODS: We utilized induced pluripotent stem cells (iPSCs) derived from two unrelated RALD patients. Isogenic HPC pairs harboring either wild-type KRAS or monoallelic KRAS (G13C) alone obtained following differentiation enabled reliable comparative analyses. The compound screening was conducted with an established platform using KRAS (G13C) iPSCs and differentiated HPCs. RESULTS: Cell culture assays revealed that monoallelic KRAS (G13C) impacted both myeloid differentiation and expansion characteristics of iPSC-derived HPCs. Comprehensive RNA-sequencing analysis depicted close clustering of HPC samples within the isogenic group, warranting that comparative studies should be performed within the same genetic background. When compared with no stimulation, iPSC-derived KRAS (G13C)-HPCs showed marked similarity with the wild-type isogenic control in transcriptomic profiles. After stimulation with cytokines, however, KRAS (G13C)-HPCs exhibited obvious aberrant cell-cycle and apoptosis responses, compatible with "dysregulated expansion," demonstrated by molecular and biological assessment. Increased BCL-xL expression was identified amongst other molecular changes unique to mutant HPCs. With screening platforms established for therapeutic intervention, we observed selective activity against KRAS (G13C)-HPC expansion in several candidate compounds, most notably in a MEK- and a BCL-2/BCL-xL-inhibitor. These two compounds demonstrated selective inhibitory effects on KRAS (G13C)-HPCs even with primary patient samples when combined. CONCLUSIONS: Our findings indicate that a monoallelic oncogenic KRAS can confer dysregulated expansion characteristics to non-transformed HPCs, which may constitute a pathological condition in RALD hematopoiesis. The use of iPSC-based screening platforms will lead to discovering treatments that enable selective inhibition of RAS-mutated HPC clones.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
2.
Cell Rep ; 43(3): 113918, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38451817

RESUMEN

Maximizing the potential of human liver organoids (LOs) for modeling human septic liver requires the integration of innate immune cells, particularly resident macrophage Kupffer cells. In this study, we present a strategy to generate LOs containing Kupffer cells (KuLOs) by recapitulating fetal liver hematopoiesis using human induced pluripotent stem cell (hiPSC)-derived erythro-myeloid progenitors (EMPs), the origin of tissue-resident macrophages, and hiPSC-derived LOs. Remarkably, LOs actively promote EMP hematopoiesis toward myeloid and erythroid lineages. Moreover, supplementing with macrophage colony-stimulating factor (M-CSF) proves crucial in sustaining the hematopoietic population during the establishment of KuLOs. Exposing KuLOs to sepsis-like endotoxins leads to significant organoid dysfunction that closely resembles the pathological characteristics of the human septic liver. Furthermore, we observe a notable functional recovery in KuLOs upon endotoxin elimination, which is accelerated by using Toll-like receptor-4-directed endotoxin antagonist. Our study represents a comprehensive framework for integrating hematopoietic cells into organoids, facilitating in-depth investigations into inflammation-mediated liver pathologies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Hepatopatías , Sepsis , Humanos , Macrófagos del Hígado , Hígado/patología , Hepatopatías/patología , Organoides , Sepsis/patología , Endotoxinas , Diferenciación Celular
3.
J Autoimmun ; 139: 103085, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37354689

RESUMEN

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by genetic heterogeneity and an interferon (IFN) signature. The overall landscapes of the heritability of SLE remains unclear. OBJECTIVES: To identify and elucidate the biological functions of rare variants underlying SLE, we conducted analyses of patient-derived induced pluripotent stem cells (iPSCs) in combination with genetic analysis. METHODS: Two familial SLE patient- and two healthy donor (HD)-derived iPSCs were established. Type 1 IFN-secreting dendritic cells (DCs) were differentiated from iPSCs. Genetic analyses of SLE-iPSCs, and 117 SLE patients and 107 HDs in the ImmuNexUT database were performed independently. Genome editing of the variants on iPSCs was performed with the CRISPR/Cas9 system. RESULTS: Type 1 IFN secretion was significantly increased in DCs differentiated from SLE-iPSCs compared to HD-iPSCs. Genetic analyses revealed a rare variant in the 2'-5'-Oligoadenylate Synthetase Like (OASL) shared between SLE-iPSCs and another independent SLE patient, and significant accumulation of OASL variants among SLE patients (HD 0.93%, SLE 6.84%, OR 8.387) in the database. Genome editing of mutated OASL 202Q to wild-type 202 R or wild-type OASL 202 R to mutated 202Q resulted in reduced or enhanced Type 1 IFN secretion of DCs. Three other OASL variants (R60W, T261S and A447V) accumulated in SLE patients had also capacities to enhance Type 1 IFN secretion in response to dsRNA. CONCLUSIONS: We established a patient-derived iPSC-based strategy to investigate the linkage of genotype and phenotype in autoimmune diseases. Detailed case-based investigations using patient-derived iPSCs provide information to unveil the heritability of the pathogenesis of autoimmune diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Lupus Eritematoso Sistémico , Humanos , Interferones , Nucleótidos de Adenina , Lupus Eritematoso Sistémico/genética
4.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108241

RESUMEN

Human iPSC-derived liver organoids (LO) or hepatic spheroids (HS) have attracted widespread interest, and the numerous studies on them have recently provided various production protocols. However, the mechanism by which the 3D structures of LO and HS are formed from the 2D-cultured cells and the mechanism of the LO and HS maturation remain largely unknown. In this study, we demonstrate that PDGFRA is specifically induced in the cells that are suitable for HS formation and that PDGF receptors and signaling are required for HS formation and maturation. Additionally, in vivo, we show that the localization of PDGFRα is in complete agreement with mouse E9.5 hepatoblasts, which begin to form the 3D-structural liver bud from the single layer. Our results present that PDGFRA play important roles for 3D structure formation and maturation of hepatocytes in vitro and in vivo and provide a clue to elucidate the hepatocyte differentiation mechanism.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Técnicas de Cultivo de Célula/métodos , Hígado , Hepatocitos , Diferenciación Celular , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Esferoides Celulares
5.
Development ; 150(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36861793

RESUMEN

Many organs of Drosophila show stereotypical left-right (LR) asymmetry; however, the underlying mechanisms remain elusive. Here, we have identified an evolutionarily conserved ubiquitin-binding protein, AWP1/Doctor No (Drn), as a factor required for LR asymmetry in the embryonic anterior gut. We found that drn is essential in the circular visceral muscle cells of the midgut for JAK/STAT signaling, which contributes to the first known cue for anterior gut lateralization via LR asymmetric nuclear rearrangement. Embryos homozygous for drn and lacking its maternal contribution showed phenotypes similar to those with depleted JAK/STAT signaling, suggesting that Drn is a general component of JAK/STAT signaling. Absence of Drn resulted in specific accumulation of Domeless (Dome), the receptor for ligands in the JAK/STAT signaling pathway, in intracellular compartments, including ubiquitylated cargos. Dome colocalized with Drn in wild-type Drosophila. These results suggest that Drn is required for the endocytic trafficking of Dome, which is a crucial step for activation of JAK/STAT signaling and the subsequent degradation of Dome. The roles of AWP1/Drn in activating JAK/STAT signaling and in LR asymmetric development may be conserved in various organisms.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Transducción de Señal/fisiología , Endocitosis/genética , Quinasas Janus/genética , Quinasas Janus/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo
6.
PLoS One ; 18(3): e0282291, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36996094

RESUMEN

Public health authorities perform contact tracing for highly contagious agents to identify close contacts with the infected cases. However, during the pandemic caused by coronavirus disease 2019 (COVID-19), this operation was not employed in countries with high patient volumes. Meanwhile, the Japanese government conducted this operation, thereby contributing to the control of infections, at the cost of arduous manual labor by public health officials. To ease the burden of the officials, this study attempted to automate the assessment of each person's infection risk through an ontology, called COVID-19 Infection Risk Ontology (CIRO). This ontology expresses infection risks of COVID-19 formulated by the Japanese government, toward automated assessment of infection risks of individuals, using Resource Description Framework (RDF) and SPARQL (SPARQL Protocol and RDF Query Language) queries. For evaluation, we demonstrated that the knowledge graph built could infer the risks, formulated by the government. Moreover, we conducted reasoning experiments to analyze the computational efficiency. The experiments demonstrated usefulness of the knowledge processing, and identified issues left for deployment.


Asunto(s)
COVID-19 , Medición de Riesgo , Humanos , COVID-19/epidemiología , Medición de Riesgo/métodos
7.
J Pharm Policy Pract ; 15(1): 79, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348416

RESUMEN

BACKGROUND: The generalized use of antibiotics has led to the emergence of bacteria which are resistant to antimicrobial agents. This stems in part from the patient's tendencies to seek antibiotics for diseases when not necessary. Hence, this article investigated patient acceptance of prescribing placebos as a substitute for unnecessary antibiotics in Japan, where physicians are under severe time constraints and are unable to offer explanations and persuade patients who demand unnecessary antibiotics prescription. METHODS: A web-based questionnaire was administered to assess patients' acceptance of the placebo treatment under informed consent. One thousand participants representing all genders and age-class were randomly selected from the online panel of a web-survey company. RESULTS: The results showed that 67.9% of the participants were "satisfied" to receive such treatments, whereas 20.6% indicated acceptance of the prescription but without satisfaction. In total, 88.5% of the participants accepted the prescription of placebo, a result consistent with that of a preceding study on placebo treatments conducted in the United States. In the survey, tone of persuasion did not affect the patients' attitudes; however, patients who were loyal to their physicians exhibited lower refusal rates. CONCLUSION: The survey results showed that the prescription of "ethical placebos" could be an acceptable option for the patients in Japan. For ethical concerns, an additional literature survey was conducted and the result suggested that such a radical treatment option could be justified, provided that the prescription benefits patients and informed consent is properly obtained. Albeit it is impractical to use, because of ethical and operational concerns, it would be worth further investigation to ensure diversity in the countermeasures for antimicrobial resistance, a major public health threat nowadays.

8.
Gastroenterology ; 162(4): 1303-1318.e18, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34973294

RESUMEN

BACKGROUND & AIMS: RNF43 is an E3 ubiquitin ligase that is recurrently mutated in pancreatic ductal adenocarcinoma (PDAC) and precursor cystic neoplasms of the pancreas. The impact of RNF43 mutations on PDAC is poorly understood and autochthonous models have not been characterized sufficiently. In this study, we describe a genetically engineered mouse model (GEMM) of PDAC with conditional expression of oncogenic Kras and deletion of the catalytic domain of Rnf43 in exocrine cells. METHODS: We generated Ptf1a-Cre;LSL-KrasG12D;Rnf43flox/flox (KRC) and Ptf1a-Cre; LSL-KrasG12D (KC) mice and animal survival was assessed. KRC mice were sacrificed at 2 months, 4 months, and at moribund status followed by analysis of pancreata by single-cell RNA sequencing. Comparative analyses between moribund KRC and a moribund Kras/Tp53-driven PDAC GEMM (KPC) was performed. Cell lines were isolated from KRC and KC tumors and interrogated by cytokine array analyses, ATAC sequencing, and in vitro drug assays. KRC GEMMs were also treated with an anti-CTLA4 neutralizing antibody with treatment response measured by magnetic response imaging. RESULTS: We demonstrate that KRC mice display a marked increase in incidence of high-grade cystic lesions of the pancreas and PDAC compared with KC. Importantly, KRC mice have a significantly decreased survival compared with KC mice. Using single-cell RNA sequencing, we demonstrated that KRC tumor progression is accompanied by a decrease in macrophages, as well as an increase in T and B lymphocytes, with evidence of increased immune checkpoint molecule expression and affinity maturation, respectively. This was in stark contrast to the tumor immune microenvironment observed in the KPC PDAC GEMM. Furthermore, expression of the chemokine CXCL5 was found to be specifically decreased in KRC cancer cells by means of epigenetic regulation and emerged as a putative candidate for mediating the unique KRC immune landscape. CONCLUSIONS: The KRC GEMM establishes RNF43 as a bona fide tumor suppressor gene in PDAC. This GEMM features a markedly different immune microenvironment compared with previously reported PDAC GEMMs and puts forth a rationale for an immunotherapy approach in this subset of PDAC cases.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ubiquitina-Proteína Ligasas , Adenocarcinoma/genética , Animales , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Epigénesis Genética , Humanos , Ratones , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Microambiente Tumoral , Ubiquitina-Proteína Ligasas/genética , Neoplasias Pancreáticas
9.
Ocul Surf ; 26: 310-317, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34666148

RESUMEN

PURPOSE: To investigate the alteration in lipid composition of meibum, objective clinical signs, and subjective symptoms associated with aging and meibomian gland (MG) dysfunction (MGD). METHODS: In 10 MGD patients [4 males/6 females, mean age: 65.6 ± 7.9 years (range: 50-79 years)] and 24 healthy volunteer subjects [young subjects: 6 males/6 females, mean age: 25.7 ± 3.8 years (range: 20-35 years), elderly subjects: 6 males/6 females, mean age: 58.4 ± 7.5 years (range: 50-79 years)], three objective clinical signs were evaluated: MG orifice obstruction, meibum score, and tear film lipid layer interference pattern. Subjective symptoms were analyzed via a 15-item questionnaire. After careful collection of meibum samples, comprehensive lipid analysis was performed via liquid chromatography-mass spectrometry. Data was analyzed via JMP® ver. 13 (SAS Institute, Inc., Cary, NC) statistical analysis software. RESULTS: In the MGD patients and elderly subjects, there was a significant decrease in non-polar lipids such as cholesterol esters (ChEs), while a significant increase in polar lipids [cholesterol (Ch), (O-acyl)-ω-hydroxy fatty acid (OAHFA), and free fatty acid (FA)] in total lipids (Tukey-Kramer test: p < 0.05). Triglyceride was significantly increased only in MGD patients (p < 0.05). Symptom scores representative of vision quality (i.e., blurred vision/haziness) were significantly negatively-correlated with the ratio of the non-polar lipid ChE, while significantly positively correlated with the polar lipids Ch, OAHFA, and FA (Spearman's rank correlation coefficient: p < 0.05). CONCLUSIONS: Our findings revealed that both MGD and aging affect the composition ratio of major meibum lipids, resulting in the appearance of subjective symptoms.


Asunto(s)
Disfunción de la Glándula de Meibomio , Masculino , Femenino , Humanos , Anciano , Persona de Mediana Edad , Adulto Joven , Adulto , Disfunción de la Glándula de Meibomio/diagnóstico , Lágrimas/química , Glándulas Tarsales/química , Envejecimiento , Ácidos Grasos/análisis
10.
Gene Ther ; 29(3-4): 138-146, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33958732

RESUMEN

Adeno-associated virus' (AAV) relatively simple structure makes it accommodating for engineering into controllable delivery platforms. Cancer, such as pancreatic ductal adenocarcinoma (PDAC), are often characterized by upregulation of membrane-bound proteins, such as MMP-14, that propagate survival integrin signaling. In order to target tumors, we have engineered an MMP-14 protease-activatable AAV vector that responds to both membrane-bound and extracellularly active MMPs. This "provector" was generated by inserting a tetra-aspartic acid inactivating motif flanked by the MMP-14 cleavage sequence IPESLRAG into the capsid subunits. The MMP-14 provector shows lower background transduction than previously developed provectors, leading to a 9.5-fold increase in transduction ability. In a murine model of PDAC, the MMP-14 provector shows increased delivery to an allograft tumor. This proof-of-concept study illustrates the possibilities of membrane-bound protease-activatable gene therapies to target tumors.


Asunto(s)
Vectores Genéticos , Neoplasias Pancreáticas , Animales , Dependovirus/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasas de la Matriz/genética , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Péptido Hidrolasas/genética
11.
PLOS Digit Health ; 1(9): e0000099, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36812582

RESUMEN

Automated summarization of clinical texts can reduce the burden of medical professionals. "Discharge summaries" are one promising application of the summarization, because they can be generated from daily inpatient records. Our preliminary experiment suggests that 20-31% of the descriptions in discharge summaries overlap with the content of the inpatient records. However, it remains unclear how the summaries should be generated from the unstructured source. To decompose the physician's summarization process, this study aimed to identify the optimal granularity in summarization. We first defined three types of summarization units with different granularities to compare the performance of the discharge summary generation: whole sentences, clinical segments, and clauses. We defined clinical segments in this study, aiming to express the smallest medically meaningful concepts. To obtain the clinical segments, it was necessary to automatically split the texts in the first stage of the pipeline. Accordingly, we compared rule-based methods and a machine learning method, and the latter outperformed the formers with an F1 score of 0.846 in the splitting task. Next, we experimentally measured the accuracy of extractive summarization using the three types of units, based on the ROUGE-1 metric, on a multi-institutional national archive of health records in Japan. The measured accuracies of extractive summarization using whole sentences, clinical segments, and clauses were 31.91, 36.15, and 25.18, respectively. We found that the clinical segments yielded higher accuracy than sentences and clauses. This result indicates that summarization of inpatient records demands finer granularity than sentence-oriented processing. Although we used only Japanese health records, it can be interpreted as follows: physicians extract "concepts of medical significance" from patient records and recombine them in new contexts when summarizing chronological clinical records, rather than simply copying and pasting topic sentences. This observation suggests that a discharge summary is created by higher-order information processing over concepts on sub-sentence level, which may guide future research in this field.

12.
PLOS Digit Health ; 1(12): e0000158, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36812600

RESUMEN

Medical professionals have been burdened by clerical work, and artificial intelligence may efficiently support physicians by generating clinical summaries. However, whether hospital discharge summaries can be generated automatically from inpatient records stored in electronic health records remains unclear. Therefore, this study investigated the sources of information in discharge summaries. First, the discharge summaries were automatically split into fine-grained segments, such as those representing medical expressions, using a machine learning model from a previous study. Second, these segments in the discharge summaries that did not originate from inpatient records were filtered out. This was performed by calculating the n-gram overlap between inpatient records and discharge summaries. The final source origin decision was made manually. Finally, to reveal the specific sources (e.g., referral documents, prescriptions, and physician's memory) from which the segments originated, they were manually classified by consulting medical professionals. For further and deeper analysis, this study designed and annotated clinical role labels that represent the subjectivity of the expressions and builds a machine learning model to assign them automatically. The analysis results revealed the following: First, 39% of the information in the discharge summary originated from external sources other than inpatient records. Second, patient's past clinical records constituted 43%, and patient referral documents constituted 18% of the expressions derived from external sources. Third, 11% of the missing information was not derived from any documents. These are possibly derived from physicians' memories or reasoning. According to these results, end-to-end summarization using machine learning is considered infeasible. Machine summarization with an assisted post-editing process is the best fit for this problem domain.

13.
Cancer Lett ; 512: 15-27, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33961925

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a desmoplastic reaction caused by cancer-associated fibroblasts (CAFs), which provokes treatment resistance. CAFs are newly proposed to be heterogeneous populations with different functions within the PDAC microenvironment. The most direct sources of CAFs are resident tissue fibroblasts and mesenchymal stem cells, however, the origins and functions of CAF subtypes remain unclear. Here, we established allogeneic bone marrow (BM) transplantation models using spontaneous PDAC mice, and then investigated what subtype cells derived from BM modulate the tumor microenvironment and affect the behavior of pancreatic cancer cells (PCCs). BM-derived multilineage hematopoietic cells were engrafted in recipient pancreas, and accumulated at the invasive front and central lesion of PDAC. We identified BM macrophages-derived CAFs in tumors. BM-derived macrophages treated with PCC-conditioned media expressed CAF markers. BM-derived macrophages led the local invasion of PCCs in vitro and enhanced the tumor invasive growth in vivo. Our data suggest that BM-derived cells are recruited to the pancreas during carcinogenesis and that the specific subpopulation of BM-derived macrophages partially converted into CAF-like cells, acted as leading cells, and facilitated pancreatic cancer progression. The control of the conversion of BM-derived macrophages into CAF-like cells may be a novel therapeutic strategy to suppress tumor growth.


Asunto(s)
Adenocarcinoma/genética , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma Ductal Pancreático/genética , Macrófagos/metabolismo , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Ratones , Ratones Desnudos , Microambiente Tumoral
14.
Transl Vis Sci Technol ; 10(4): 21, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34003999

RESUMEN

Purpose: Meibomian gland dysfunction (MGD) is a major cause of evaporative dry eye. The purpose of this study is to assess the efficacy of a mineral oil-containing ophthalmic solution (MO) in mitigating the evaporative dry eye phenotypes in a mouse model in which fatty acid elongase Elovl1 is disrupted. Methods: Elovl1-deficient mice were assessed in terms of number of plugged meibomian gland orifices, tear film breakup time (BUT), corneal fluorescein staining (CFS) score, tear quantity, and histology. The effects of the MO on the dry eye phenotypes were compared with those in groups not treated or treated with blank ophthalmic solution (BL). Results: Untreated Elovl1-deficient mice exhibited dry eye phenotypes with MGD symptoms such as plugging of meibomian gland orifices (P = 0.002 compared with control mice), high CFS scores (P = 0.002), and shortened BUT (P < 0.001). Among three groups of Elovl1-deficient mice (MO treated, BL treated, and untreated), the MO-treated group exhibited fewer plugged orifices (MO treated, 7.6; BL treated, 10.5 [P = 0.033]; untreated, 13.0 [P < 0.001]), lower CFS scores (MO treated, 1.1; BL treated, 2.7 [P = 0.013]; untreated, 2.5 [P = 0.050]), and improved BUT (MO treated, 19.4 seconds; BL treated, 8.3 seconds [P = 0.098]; untreated, 1.5 seconds [P = 0.008]). Conclusions: Elovl1-deficient mice exhibited multiple MGD symptoms, which were improved by MO. Translational Relevance: Our findings reveal the usefulness of Elovl1-deficient mice as a model for dry eye with MGD and suggest the potential of mineral oil eye drops as a treatment for this condition.


Asunto(s)
Síndromes de Ojo Seco , Disfunción de la Glándula de Meibomio , Animales , Síndromes de Ojo Seco/tratamiento farmacológico , Glándulas Tarsales , Ratones , Aceite Mineral , Soluciones Oftálmicas
15.
Sci Rep ; 10(1): 20740, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244076

RESUMEN

This article addresses an optimisation problem of distributing rapid diagnostic kits among patients when the demands far surpass the supplies. This problem has not been given much attention in the field, and therefore, this article aims to provide a preliminary result in this problem domain. First, we describe the problem and define the goal of the optimisation by introducing an evaluation metric that measures the efficiency of the distribution strategies. Then, we propose two simple strategies, and a strategy that incorporates a prediction of patients' visits utilising a standard epidemic model. The strategies were evaluated using the metric, with past statistics in Kitami City, Hokkaido, Japan, and the prediction-based strategy outperformed the other distribution strategies. We discuss the properties of the strategies and the limitations of the proposed approach. Although the problem must be generalised before the actual deployment of the suggested strategy, the preliminary result is promising in its ability to address the shortage of diagnostic capacity currently observed worldwide because of the ongoing coronavirus disease pandemic.


Asunto(s)
Asignación de Recursos para la Atención de Salud/métodos , Virus de la Influenza A , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Modelos Estadísticos , Juego de Reactivos para Diagnóstico/provisión & distribución , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/virología , Humanos , Gripe Humana/virología , Japón/epidemiología , Pandemias , SARS-CoV-2/genética
16.
J Biomed Semantics ; 11(1): 11, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958039

RESUMEN

BACKGROUND: Recently, more electronic data sources are becoming available in the healthcare domain. Electronic health records (EHRs), with their vast amounts of potentially available data, can greatly improve healthcare. Although EHR de-identification is necessary to protect personal information, automatic de-identification of Japanese language EHRs has not been studied sufficiently. This study was conducted to raise de-identification performance for Japanese EHRs through classic machine learning, deep learning, and rule-based methods, depending on the dataset. RESULTS: Using three datasets, we implemented de-identification systems for Japanese EHRs and compared the de-identification performances found for rule-based, Conditional Random Fields (CRF), and Long-Short Term Memory (LSTM)-based methods. Gold standard tags for de-identification are annotated manually for age, hospital, person, sex, and time. We used different combinations of our datasets to train and evaluate our three methods. Our best F1-scores were 84.23, 68.19, and 81.67 points, respectively, for evaluations of the MedNLP dataset, a dummy EHR dataset that was virtually written by a medical doctor, and a Pathology Report dataset. Our LSTM-based method was the best performing, except for the MedNLP dataset. The rule-based method was best for the MedNLP dataset. The LSTM-based method achieved a good score of 83.07 points for this MedNLP dataset, which differs by 1.16 points from the best score obtained using the rule-based method. Results suggest that LSTM adapted well to different characteristics of our datasets. Our LSTM-based method performed better than our CRF-based method, yielding a 7.41 point F1-score, when applied to our Pathology Report dataset. This report is the first of study applying this LSTM-based method to any de-identification task of a Japanese EHR. CONCLUSIONS: Our LSTM-based machine learning method was able to extract named entities to be de-identified with better performance, in general, than that of our rule-based methods. However, machine learning methods are inadequate for processing expressions with low occurrence. Our future work will specifically examine the combination of LSTM and rule-based methods to achieve better performance. Our currently achieved level of performance is sufficiently higher than that of publicly available Japanese de-identification tools. Therefore, our system will be applied to actual de-identification tasks in hospitals.


Asunto(s)
Registros Electrónicos de Salud , Lenguaje , Procesamiento de Lenguaje Natural , Aprendizaje Profundo
17.
Stem Cell Res ; 39: 101485, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31255830

RESUMEN

We established three iPSC lines from postmortem-cultured fibroblasts derived following the sudden unexpected death of an 8-year-old girl with Lennox-Gastaut syndrome, who turned out to have the R551H-mutant STXBP1 gene. These iPSC clones showed pluripotent characteristics while retaining the genotype and demonstrated trilineage differentiation capability, indicating their utility in disease-modeling studies, i.e., STXBP1-encephalopathy. This is the first report on the establishment of iPSCs from a sudden death child, suggesting the possible use of postmortem-iPSC technologies as an epoch-making approach for precise identification of the cause of sudden death.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Munc18/genética , Adolescente , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Femenino , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Cariotipo , Leucocitos Mononucleares/metabolismo , Repeticiones de Microsatélite/genética , Mutación/genética
18.
Stem Cell Res Ther ; 10(1): 185, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234949

RESUMEN

BACKGROUND: Disease modeling with patient-derived induced pluripotent stem cells (iPSCs) is a powerful tool for elucidating the mechanisms underlying disease pathogenesis and developing safe and effective treatments. Patient peripheral blood (PB) cells are used for iPSC generation in many cases since they can be collected with minimum invasiveness. To derive iPSCs that lack immunoreceptor gene rearrangements, hematopoietic stem and progenitor cells (HSPCs) are often targeted as the reprogramming source. However, the current protocols generally require HSPC mobilization and/or ex vivo expansion owing to their sparsity at the steady state and low reprogramming efficiencies, making the overall procedure costly, laborious, and time-consuming. METHODS: We have established a highly efficient method for generating iPSCs from non-mobilized PB-derived CD34+ HSPCs. The source PB mononuclear cells were obtained from 1 healthy donor and 15 patients and were kept frozen until the scheduled iPSC generation. CD34+ HSPC enrichment was done using immunomagnetic beads, with no ex vivo expansion culture. To reprogram the CD34+-rich cells to pluripotency, the Sendai virus vector SeVdp-302L was used to transfer four transcription factors: KLF4, OCT4, SOX2, and c-MYC. In this iPSC generation series, the reprogramming efficiencies, success rates of iPSC line establishment, and progression time were recorded. After generating the iPSC frozen stocks, the cell recovery and their residual transgenes, karyotypes, T cell receptor gene rearrangement, pluripotency markers, and differentiation capability were examined. RESULTS: We succeeded in establishing 223 iPSC lines with high reprogramming efficiencies from 15 patients with 8 different disease types. Our method allowed the rapid appearance of primary colonies (~ 8 days), all of which were expandable under feeder-free conditions, enabling robust establishment steps with less workload. After thawing, the established iPSC lines were verified to be pluripotency marker-positive and of non-T cell origin. A majority of the iPSC lines were confirmed to be transgene-free, with normal karyotypes. Their trilineage differentiation capability was also verified in a defined in vitro assay. CONCLUSION: This robust and highly efficient method enables the rapid and cost-effective establishment of transgene-free iPSC lines from a small volume of PB, thus facilitating the biobanking of patient-derived iPSCs and their use for the modeling of various diseases.


Asunto(s)
Antígenos CD34/metabolismo , Reprogramación Celular/fisiología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Virus Sendai/genética , Adolescente , Adulto , Anciano , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Reprogramación Celular/genética , Femenino , Citometría de Flujo , Humanos , Cariotipificación , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Persona de Mediana Edad , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Adulto Joven
19.
Int J Oncol ; 55(1): 211-222, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31180531

RESUMEN

Lymph node metastasis is an independent prognostic factor in pancreatic cancer. However, the mechanisms of lymph node colonization are unknown. As a mechanism of lymphatic metastasis, it has been reported for other types of cancer that spheroids from tumor cells cause circular chemorepellent­induced defects (CCIDs) in lymphatic endothelial monolayers. In pancreatic cancer, such mechanisms of metastasis have not been elucidated. The present study evaluated the involvement of this new mechanism of metastasis in pancreatic cancer and investigated the associated factors. In human pancreatic cancer tissue, it was observed that clusters of cancer cells penetrated the wall of lymphatic ducts around the primary tumor. An in vitro co­culture system was then used to analyze the mechanisms of tumor cell­mediated disruption of lymphatic vessels. Time­lapse microscopic imaging revealed that spheroids from pancreatic cancer cells caused circular defects in lymphatic endothelial monolayers. CCID formation ability differed depending on the cell line. Neither aggregation of spheroids nor adhesion to lymphatic endothelial cells (LECs) exhibited a significant correlation with this phenomenon. The addition of supernatant from cultured cancer cells enhanced CCID formation. Microarray analysis revealed that the expression of S100 calcium binding protein P (S100P) was significantly increased when LECs were treated with supernatant from cultured cancer cells. Addition of a S100P antagonist significantly suppressed the migration of LECs and CCID formation. The present findings demonstrated that spheroids from pancreatic cancer cells caused circular defects in lymphatic endothelial monolayers. These CCIDs in pancreatic cancer were partly regulated by S100P, suggesting that S100P may be a promising target to inhibit lymph node metastasis.


Asunto(s)
Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Células Endoteliales/patología , Neoplasias Pancreáticas/patología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Adhesión Celular/fisiología , Línea Celular Tumoral , Células Endoteliales/metabolismo , Femenino , Humanos , Inmunohistoquímica , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Metástasis Linfática , Masculino , Ratones , Persona de Mediana Edad , Invasividad Neoplásica , Neoplasias Pancreáticas/metabolismo , Esferoides Celulares
20.
Lab Invest ; 99(8): 1233-1244, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30728464

RESUMEN

Genetically engineered mouse models (GEMMs) that recapitulate the major genetic drivers in pancreatic ductal adenocarcinoma (PDAC) have provided unprecedented insights into the pathogenesis of this lethal neoplasm. Nonetheless, generating an autochthonous model is an expensive, time consuming and labor intensive process, particularly when tissue specific expression or deletion of compound alleles are involved. In addition, many of the current PDAC GEMMs cause embryonic, pancreas-wide activation or loss of driver alleles, neither of which reflects the cognate human disease scenario. The advent of CRISPR/Cas9 based gene editing can potentially circumvent many of the aforementioned shortcomings of conventional breeding schema, but ensuring the efficiency of gene editing in vivo remains a challenge. Here we have developed a pipeline for generating PDAC GEMMs of complex genotypes with high efficiency using a single "workhorse" mouse strain expressing Cas9 in the adult pancreas under a p48 promoter. Using adeno-associated virus (AAV) mediated delivery of multiplexed guide RNAs (sgRNAs) to the adult murine pancreas of p48-Cre; LSL-Cas9 mice, we confirm our ability to express an oncogenic Kras G12D allele through homology-directed repair (HDR), in conjunction with CRISPR-induced disruption of cooperating alleles (Trp53, Lkb1 and Arid1A). The resulting GEMMs demonstrate a spectrum of precursor lesions (pancreatic intraepithelial neoplasia [PanIN] or Intraductal papillary mucinous neoplasm [IPMN] with eventual progression to PDAC. Next generation sequencing of the resulting murine PDAC confirms HDR of oncogenic KrasG12D allele at the endogenous locus, and insertion deletion ("indel") and frameshift mutations of targeted tumor suppressor alleles. By using a single "workhorse" mouse strain and optimal AAV serotype for in vivo gene editing with combination of driver alleles, we present a facile autochthonous platform for interrogation of the PDAC genome.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Neoplasias Experimentales , Neoplasias Pancreáticas , Recombinación Genética/genética , Animales , Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Guía de Kinetoplastida/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA